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Introduction 

Our modern everyday lives would be completely different, if not impossible without the 

invention of the computer. Just imagine having to go to the library looking through volumes 

of an encyclopedia, just to look up a simple piece of information that would’ve taken you 

less than a minute to google. And it’s not just out laptops and PCs that are computers, 

everything modern, from our cars to our TVs and the ever-expanding internet of things, 

have some sort of processing computer that allow it to function properly. 

Despite the omnipresence of computers in modern society most people live in ignorance 

regarding how they actually work. When asked the question of “how do computer work?” 

the majority of people would simply answer with an “I dunno”. However, the truth is quite 

complicated, as there are billions of processes happening every instant making your 

computer display this very guide that you are reading. 

In this guide I will hopefully clear up some of the mystery surrounding computers. And even 

though by the end of it you’ll still be equally baffled as to how modern computers work, you 

will know the basic concepts behind computer science, and will grow a sense of respect 

towards the hundreds of engineers that made this marvel of modern technology possible. 

Along with teaching you computer science, this guide will also show you how to build a 

computer from scratch. But don’t get your hopes up, because while we will be building a 

computer in this project, don’t expect the final product to be able to run Microsoft Word 

or your favorite game. No, this computer that we will be building can only perform very 

basic computational tasks like doing basic math, or displaying the Fibonacci numbers. These 

tasks could easily be programmed nowadays with only a few lines of code.  

So, in that case, what’s the point of this computer? Well, it is mainly a teaching tool used to 

show how a computer performs all the various tasks. By building it, you learn what each 

component in a computer does, how it works and interacts with the other components to 

output some data. Then, if you hunger for more knowledge you can scale up and learn how 

modern computers take the concepts taught in this guide, and inflate them to enormous 

proportions. 

Lastly, don’t be afraid of starting this project without any prior experience with electronics. 

By following this guide anyone with two hands, determination and patience, can build this 

8bit breadboard computer. Through the guide, you will learn about computer science, and 

put the knowledge into practice by undertaking this project. 

 

✦ ✦ ✦ 

  



The Very Basics 

Transistors 

As with all subjects, we must start from the beginning, or in the case of computer science 

from the smallest scales. Transistors are to a computer what cells are to an organism; they 

are microscopic devices that in unison to create a complex system. Nowadays transistors 

are smaller than 50 nanometers, that’s smaller than the smallest thing visible using an optical 

microscope. Modern processors have billions of transistors inside and even our simple 

breadboard computer will have thousands of them (but we won’t be using them separately).  

So, what are these little transistors? Without getting into the physics of 

them, transistors are little switches that allow electricity to flow depending 

on an electrical input. Instead of activating the switch by hand, the transistor 

activates the switch with current. With the diagram on the right, if we have 

current flowing into B, then the transistor allows a larger current to flow 

from C to E. These transistors are essential for any computer as they can 

be connected to make much more complex and useful circuits. Of these 

circuits, logic gates are the most important. 

 

Logic Gates 

Logic gates are circuits that take one or two binary inputs and return an output depending 

on what those two inputs are. This is called Boolean logic. These binary inputs are used 

throughout the whole guide and they will be referred to under different names (on/off, 1/0, 

HIGH/LOW) but they mean the same thing. The logic gates come in various flavors: AND, 

OR, NOT, NAND, NOR, XOR; each of these giving out a different output based on the 

combination of inputs. The output of the logic gate is dictated by series of transistors that 

are arranged to return the wanted output. Here we’ll go over each type of resistor, 

explaining what they do: 

 

The AND Gate: 

The AND gate takes two inputs and if they’re both turned on, it turns the output on as 

well. Otherwise, the output would remain off. Here is the symbol for the AND gate:  

 

 

For this gate the output ‘O’ only turns on if current 

is flowing from both ‘A’ and ‘B’. This can be 

expressed using the truth table on the, where a 1 

represents current flowing and a 0 does not.  

  

Input A Input B Output O 

0 0 0 

1 0 0 

0 1 0 

1 1 1 

AND O 



The OR Gate: 

The OR gate takes two inputs and if one or both are turned on, the output turns on as well. 

If both inputs are off, then the output remains off. Here is the symbol for an OR gate:  

For this gate the output ‘O’ turns on if current is 

flowing from either ‘A’, ‘B’ or both.  

 

 

 

The NOT Gate: 

The NOT gate usually called an inverter only takes one input. This gate simply inverts the 

input, for example, if we have a 1 coming in, then we get a 0 as the output. 

Here is the symbol for the NOT gate: 

In computer science a line above an input or output means 

the inverse or that it is activated when LOW. In this gate, if 

our input is A the output is the inverse of A, so Ā.  

 

The NOR and NAND Gates: 

These two gates are less common as they are the combination of a AND or OR gate with 

a NOT gate. Simply put, they return the opposite of their original gate. The symbols for 

these two gates are the following: 

 

 

 

In this logic table we see that the outputs are the 

exact opposite as the ones for the AND gate. This 

gate outputs a 1 for every case except when the two 

inputs are on. 

  

Input A Input B Output O 

0 0 0 

1 0 1 

0 1 1 

1 1 1 

Input A Output Ā 

0 1 

1 0 

Input A Input B Output Ō 
0 0 1 

0 1 1 

1 0 1 

1 1 0 

OR O 

NOT 

NAND Ō 



 

 

The same case occurs for the NOR gate which is the 

opposite as the OR gate. In this case the output 

turns on only when neither inputs are on. 

 

 

 

The XOR Gate: 

The XOR gate, or exclusive OR turns on when only a single output is on. What this implies 

is that it outputs a 1 when one input or the other (but not both) are on. Here is the symbol 

for the XOR gate: 

 

 

 

We can see that the logic table for the XOR is 

very similar to the OR gate’s with the only 

difference being the last row where both inputs 

are on, so the gate doesn’t turn on. 

 

 

The Binary System 

When we think of computers the images of 1s and 0s often come to mind. As we've seen 

in the logic gate section the 1s and 0s are used to represent the state (on or off) of a 

particular input or output. These 1s and 0s are also used to store any kind of computer data 

whether it be images, video, audio or text, all of which is achieved using the various 

computer components and a long sequence of 1s and 0s. 

The binary system is a way of representing numbers using only two unique digits. This is 

helpful to have as a computer can treat these digits as little 'switches', representing a 0 when 

it's in one direction or a 1 when in the other direction. Computers use binary because the 

'switches' can be easily controlled with current (using transistors). 

So how does the binary system work? Binary is like any other system for representing 

numbers. To you, who has lived his life in a decimal centered world, the binary system may 

appear a little strange. To help us understand binary better, we often convert it to decimal, 

but keep in mind that the computer doesn’t need to do that. Another advantage of using 

binary is that math is easier with binary and can be done with a series of logic gates (see 

ALU). As an example, let’s take the number 27 in decimal and convert it to binary. 

  

Input A Input B Output Ō 
0 0 1 

0 1 0 

1 0 0 

1 1 0 

Input A Input B Output O 
0 0 0 

0 1 1 

1 0 1 

1 1 0 

NOR 

Ō XOR 



Decimal:     Binary: 

 

 

 

 

 

As we can see in both systems, the individual digits are multiplied by some number and then 

added together. In decimal, these are the powers of ten while in binary these are the powers 

of two. In both cases we get the same answer, the difference comes in what values those 

numbers represent. The use of the numbers 1 and 0 can be confusing (10 in binary is 2 in 

decimal) so when using binary, it is equally as correct to represent the digits using ○ and 

●. 

 

✦ ✦ ✦ 

 

  

27 
2 x 101 = 20     +      7 x 100 = 

7 

 

11011 
1x24 + 1x23 + 0x22 + 1x21 + 1x20 = 27 

16 + 8 + 0 + 2 + 1 = 27 

 



Component Overview 

From transistors and logic gates we will now scale up to explain the different sections of 

the computer; this is computer architecture. The design of a computer: what it can do and 

its limitations, are all based on computer architecture and the specifications that are dictated 

by the computer's components. Inside a computer there are many components, these are 

the same basic ones that are found in the breadboard computer but they’re repeated 

hundreds of times, are made orders of magnitude larger in terms of storage and memory 

and smaller in terms of physical space. 

To make the components do work they each have their own control lines. When these 

lines are activated they let the component perform a certain action. For example, one of 

the control lines would be to output data from one component, so it would only be able to 

do so when the control line is activated. To run a program, the computer would activate 

the control lines in series, performing the instructions given. 

Of the basic components the first is the clock. This is the computer's metronome and at 

each beat or tick of the clock an instruction is executed. Without this clock, there would 

be no order and multiple instructions would be happening at the same time, messing up 

data and the output of the program. However, this also means that the speed at which the 

computer runs, is set by the frequency of the clock. This is known as the clock speed which 

is usually expressed in gigahertz when talking about modern computers. Our computer's 

clock speed will be extremely slow compared to modern processors, but this won't matter 

because the programs that you write into this machine are very short (and if it's too fast 

you won't be able to see the steps involved in the computing process). 

RAM is where the program, and any other data used by the program, is stored. Any 

computer program requires RAM to run with high end games and demanding applications 

requiring more than 8 gigabytes. In contrast, this computer will only be able to hold 16 bytes 

of memory (sixteen 8-digit binary numbers) but this could be expanded. This means that 

only 16 total instructions, including extra values to be used in the program, can be inputted 

into memory. While this is very little, it serves our purpose of seeing how computers work. 

It is important to know a computer’s RAM is so that you can know what kind of programs 

it will be able to run.  

Another component within the breadboard computer is the arithmetic logic unit, or ALU. 

In modern computers, these are incorporated within the processor. Here, is where all the 

math in the computer is done. In the case of this computer it simply adds or subtracts two 

binary numbers, but these operations can be repeated to perform multiplication and division 

through some clever Boolean logic. The values used to add or subtract are retrieved from 

the A and B registers in this computer. 

Next, there are the registers. Again, modern computers have hundreds or even thousands 

of registers found inside the processor. Here, temporary data is stored to be sent to 

another component. For example, one of the registers will hold a value to then be sent to 



the ALU which might then output this new value back into the same register. In our 

computer there are five total registers; these are: 

A register - this is the first of two registers connected to the ALU. Data from memory is 

inputted in which can then later be added to the B register. The value from this register can 

then be outputted to the display or sent to RAM.  

B register - this is the second register to be connected to the ALU. It serves the same 

function as the A register with the exception that the value stored in this register cannot 

be outputted.  

Instruction register - as the name implies, this register holds the binary value of the current 

instruction. This value is then sent to the control logic to tell the rest of the components 

what to do to run the instruction.  

Memory address register (MAR) – this register works together with the RAM to fetch the 

data stored in a certain location. In the breadboard register, the MAR holds 4bits of data 

which tell RAM what byte of data to retrieve. The more memory you have, the longer the 

addresses will need to be to accommodate said memory. The programs that will be inputted 

will be done so through the MAR and the RAM directly.  

Output register – lastly, we have the output register. This register simply stores a value to 

then be outputted to the display. Since this register can only hold 8 bits of data in this 

computer, the computer can only output numbers up to 255 (eight 1s in binary). 

The Program Counter is used to keep track of what instruction needs to be executed next. 

Since we have a maximum of 16 instructions due to the limitations in RAM our program 

counter counts in binary from 0000 to 1111. However, values can also be inputted into the 

program counter to skip forwards or backwards in the program to create loops.   

The bus is the computer’s highway as it transports data from one component to another. If 

we wanted to output a value from the ALU to then be stored in a register, the bus would 

be needed to transport the data. Instead of passing the data directly from one component 

to the other, it goes through the bus and then the second component picks it up and stores 

it. Having a bus is useful as it connects all the components together and allows all of them 

to access each other’s data. 

Finally, there is the control logic. This component takes the instruction given by the 

instruction register, and then tells the rest of the components what control lines to activate 

to complete that instruction. For example, if we needed to load a value from RAM into the 

A register the instruction decoder might say, “RAM, output data at address 0010 and put it 

onto the bus. A register, take the data from the bus and store it.” Obviously, this wouldn’t 

be done with words but instead through combinational logic, which takes all the possible 

inputs and gives the appropriate outputs. 

 

  



Here is a basic diagram outlining how data is moved around the components. 

✦ ✦ ✦ 

 

  



Making the Computer 

In the next few sections the guide will go one by one through every component in the 

computer and explain how it works and how to build your own. This type of computer is 

known as a ‘breadboard’ computer as it is built on breadboards. A breadboard is base in 

which you can connect various electronic circuits. They’re most commonly used for 

prototyping and testing circuits out before soldering them. Breadboards are very useful 

since the only thing you need to build a circuit is the breadboard and the material for the 

circuit itself; no other tools or knowledge is needed. They’re extremely safe, so no safety 

precautions are necessary except for the obvious “No water near electrical circuits”.  

However, there is a downside to these devices. While their safe and easy to use, the 

connections between wires can be finnicky, and for a large-scale project like this, it is 

essential to go over every connection carefully. Also, when hooking up all the wires, you 

often make a mistake and connect wires to their incorrect destinations. Most times nothing 

will happen, but if you mess up particularly badly a chip might heat up a lot or an LED could 

burn out. 

The connections in the breadboard work 

as shown in the diagram. Sections A and 

D run horizontally, with every pin of each 

row making a connection. These rows are 

usually reserved for power and ground. 

Then, there is sections B and C running 

vertically. Notice that the columns are 

split in two, so no connections is made 

between the two sections. Here, the main 

circuit is built, where most devices are 

hooked up. 

One last thing before getting on with the guide, is that when building the various 

components, many different chips are used. Some of the simpler chips won’t be explained 

in detail, so to know what each pin does it is recommended that you look up the data sheet 

online.  

 

✦ ✦ ✦ 

  



 The Clock 

As was mentioned previously, the computer’s clock keeps all the components in order, 

managing each instruction one by one. Without a clock, then the computer would get all 

sorts of errors: data would overlap on the bus or multiple instructions would be ran at the 

same time. Furthermore, since the clock ensures that all instructions happen step by step, 

then the speed at which the clock runs sets the pace for the rest of the computer.  

For this computer we want the clock speed to be variable. Sometimes we would want to 

see what’s going on, while other times we may just want to get the program’s output, so, 

the clock speed should be able to change based on what the user wants. However, to truly 

see step by step what each component does then it would be best to just control the clock 

speed ourselves with the push of a button. In that case, the computer will have two clocks: 

an automatic one and a manual one.   

The Automatic Clock 

The way this clock works is by alternating the output voltage from high(on) to low(off) 

doing so in equal periods of time. If we were to graph this change in voltage we would see 

a series of square waves where the peak and trough of the wave is equal.  As the voltage 

alternates from 0 volts to the clocks output voltage we get the following waves: 

 

 

 

 

To generate these series of waves, the computer will take advantage of a chip which makes 

them automatically: the 555 timer. So, how does this timer take a continuous input voltage 

and turn it into a series of square waves? Here is a diagram of the circuit that the computer 

will use:  

0V 

3 - 5V 

1 

2 



The first thing that happens once the chip is hooked up properly is, a low voltage that is less 

than a third of the supply (so in this case 1.67V) is applied for an instant causing the output 

pin to go high beginning the cycle. Inside the chip, there is an SR latch; this device simply 

holds the output which is HIGH due to the voltage applied previously.  

Then, voltage (blue arrow 1) starts charging the capacitor C1 until it goes over the timer’s 

threshold (pin 6) which is two thirds of the supply voltage: 3.33V. Once this happens the SR 

latch turns the output LOW and holds it. Apart from the regular output, inside the chip 

there is also an inverted output which goes HIGH at this point. This inverted output is 

connected to a discharge (pin 7) which discharges the capacitor C1 until it goes below 

1.67V. Here we see the flow of electricity change as now it flows from the capacitor to the 

discharge (blue arrow 2). Once the capacitor discharges below 1.67V the capacitor is again 

charged up and the process is repeated, creating square waves as the output switches from 

HIGH to LOW. 

Note that the output voltage isn’t 5V volts because 555 timer limits it to 1.7V less than the 

input. Also, pin 4 is a reset pin that is activated when it is LOW, so it is set HIGH in the 

diagram.  

The frequency between the changes in high to low is based on three factors, these are C1, 

R1 and R2. By varying C1’s capacitance, it changes the amount of time that it takes it to 

charge up. The two resistors also limit the current passing which also slows down the rate 

at which C1 charges. Moreover, if you look at the diagram you can also see that when C1 

discharges it must pass through R2 again, further increasing the time at which the capacitor 

discharges.  

For our computer we want to be able to change the speed at which it runs, this means that 

we must have a way to change the clock’s frequency. As we now know, by changing the 

R2’s resistance we’ll also see a change in the clock’s frequency. Using a potentiometer which 

varies the resistance we can control the time which it takes for C1 to charge and discharge. 

Here is the previous diagram modified to show this addition: 

 

 

  

0-1MΩ 

1kΩ 

1kΩ 

2µF 

5V 



The Manual Clock 

Next, the computer should also have a manual clock where you would step an instruction 

forward by pushing a button. This is much less complicated than the astable timer because 

it really is just connecting a button. The button works by letting electricity through when it 

is pushed down. If we were to connect the button to the clock’s output, then the 

components would advance when the button is pressed.  

Now we have two separate outputs for the clock, when we should only have one. 

Therefore, to switch between the two types of clock (automatic and manual) a two-state 

switch is used. This switch takes two inputs and based on its position it connects one of the 

inputs to the output.  

Lastly, the clock needs a way to halt a program and stop the computer from running. To do 

this, the computer uses an AND gate through the 74LS08 chip. If the clock is on and the 

halt line is also on then the gate will let the output pass. Otherwise, if the halt line is brought 

LOW, then the AND gate won't let the clock’s signal through and thus the clock will be 

stopped.  

There is a minor problem when using the 74LS08, which is that when one of the gate’s 

inputs isn’t connected to either ground or power (so when the button is open), the AND 

gate would default to HIGH instead of the desired LOW. To fix this issue a pull-down 

resistor (10kΩ) is used with the button to allow electricity to flow when it is closed, and to 

connect to ground when it is open.  

  

Variable 

Resistor 
It is also recommended 

that if pin 8 is not 

used, to connect it to 

ground via a 100nF 

capacitor.. 

It is recommended 

that if pin 4 is not 

used, to connect it 

to 5V. 

When halt line is 

connected to ground, 

it clock stops. 

LED is used to show 

the clock ticks clearly. 

Resistor next to LED 

is optional as the 

74LS08 chip controls 

current. 



The Register  

In any computer there are many registers, this one the five basic registers: the A and B 

registers to access the ALU; the instruction register to store the current instructions; the 

output register to hold values to be displayed; and the memory address register to access 

memory from RAM.  

This component acts as fast memory that can be used to store values to be sent off to other 

parts of the CPU; in essence, registers are temporary data storages. In this computer, the 

largest register will only hold 8 bits (or a byte) of data, as this what most other components 

use. To be able to store a bit of data we need a device that can hold a value that is inputted 

when the clock ticks, and keep it there until another value replaces it. However, we also 

need a way to control when a value can be inputted, this is done through a control line. 

This so-far hypothetical device is called a D flip-flop. 

The D flip-flop 

D flip-flops hold a value (1 or 0) that is inputted through a data line when a different enable 

line is also activated. This little device also only allows data stored to be changed on the 

rising edge of the clock (so as it goes from low to high). This means that is the data line is 

changed in between clock cycles, the stored value won’t change until the clock goes HIGH. 

Here is a graph showing how the flip-flop’s stored value (Q) changes with the clock (CK) 

and input (D): 

  

The clock oscillates 

between high and low. 

D is the input going into 

the flip-flop. 

Q is set to the same as D 

at every rise (marked with 

the blue lines) 

Lastly, �̅� is always the 

opposite of Q 

 

A D flip-flop isn’t a full register though, because it at every clock pulse the data line would 

be set to whatever the data input is. So, an input enable line is needed that controls whether 

the value coming in should get loaded onto the flip flop. By creating a circuit with a D flip-

flop and various logic gates we can create a register that updates its output on the rising 

edge of the clock, and only when the load enable line is on. 

 

 



 

To show how this circuit works let’s say that the enable line goes LOW: The bottom AND 

gate would output a 0 no matter what the input is as it’s connected to the load. The top 

AND gate would also output whatever the previous output (Q) is. Thus, the OR gate would 

output whatever the top AND gate’s result is because the bottom input is 0. Overall, there 

is no change to Q as that bit of data just gets cycled through. 

If the enable line is a 1: The top AND gate would output a 0 no matter what Q is due to 

the not gate in front changing the 1 to a 0. Then the bottom AND gate returns whatever 

the input is. Next the OR gate outputs what its bottom input is, meaning that the input y 

has been transferred into Q.  

This is the process that a 1 bit register goes through to output the correct value by setting 

its output the same as the data input when the load line is on. This 1 bit register is not very 

useful as most of our components deal with 8 bits at a time. To create an 8bit register we 

just link up these modules with the same load enable line and clock, creating 8 registers 

each with their own input and output. 



To build an 8bit register, the computer will use the 74LS173 chip. This chip is simply a 4bit 

register so we’ll have to use two of these in tandem. So here is how the chip works: 

 

Pins 1 – 2. The output controls. We want to always have an output so that we can see 

what’s inside the register at all times. Since these pins are inverted they should be connected 

to ground to be switched on. 

Pins 3-6. The 4 data inputs. These will be connected to the bus and will be receiving data 

from it.  

Pin 7. The clock input pin. This one will be hooked up to the clock’s output to run the D 

flip-flops inside the chip.  

Pins 9 – 10. The load enable pins. These pins allow the data to be written onto the chip. 

They will be connected together to a separate load line which will be used when setting up 

the computer’s control logic. Since these pins are also inverted when this load line is low 

data can be written into the registers. 

Pins 11-14. The output pins. They will output data from the registers into the bus through 

the 74LS245 chip. 

Pin 15. The clear pin. This pin erases all data stored in the pin. For now it will be connected 

to ground so that it doesn’t clear the data when using the register, however, the computer 

will have a reset button which will be connected to this clear pin. 



Lastly, to complete this circuit, one last chip is needed. As is mentioned above, the output 

enable lines will always be on to see the data inside the chip. This means that data will always 

be going onto the bus which could end up messing up the program. To prevent this from 

happening the 74LS245 (read the data sheet to what the pins do) is used, which only allows 

data to flow in one direction when an enable line is activated; this will be the registers’ 

output enable control lines. So when this chip is not enabled, data from the registers won’t 

go out to the bus. 

 

   

The data lines will be 

connected to the bus. 

The clear line will be 

connected to a master 

reset. 

Be careful when wiring. 

Some of the leads overlap 

or are hidden underneath. 

Connect this to the 

clock’s output. 

74LS173 74LS173 74LS245 



In the computer architecture overview section of this guide, I explained that there are 5 

different registers. At this early stage, we can construct 4 of these 5 registers: The A 

register, the B register, the Instruction register and the output register. Both the A and B 

registers are identical to the one explained above. For now, they connect to the bus and 

input and output data from and to there.  

However, the instruction register is slightly different, if we refer back to the original 

computer architecture diagram we can see that only 4 bits are output to the bus. The other 

four are being sent to the control logic module. This means that this register will have a 

slight difference, instead of connecting all 8 outputs to the bus we only connect the least 

significant (or right most) bits. The other 4 bits will later be used when constructing the 

computer’s control logic.  

 

Lastly, we have the output register. This register only takes inputs as it doesn’t need to 

output any data back to the other components. Instead, this register is used to store the 

data that the user interacts with (e.g. the answer to a calculation). If the program inputted 

was to be the sum of two numbers, then the answer would be stored at this register and 

then shown in the display for the user.  

These outputs will 

later be connected 

to the control logic. 

In this register data lines 1-4 don’t act 

as outputs, therefore the output 

enable only enables lines 5-8. 

74LS245 74LS173 74LS173 



`This computer’s display sadly isn’t very user friendly; there is no monitor or LCD display. 

To keep this project as simple yet as informative as possible, the computer will use 8 LEDs 

to represent an 8bit binary number. The display can be changed if you want to or even 

connected to a microcontroller to convert the outputs into a decimal number 

 
✦ ✦ ✦ 

  

The “display”. Each LED 

is labelled to show their 

value. 

Output enables are tied to ground so 

that it always outputs to the LEDs. 

74LS173 74LS173 

Data In lines are connected 

directly to the bus. Since 

this register doesn’t output 

back, no 74LS245 chip is 

needed. 



The ALU 

The ALU (Arithmetic Logic Unit) is the component in a computer that does all the math. 

Mostly, this component simply adds or subtracts two numbers, but these operations can be 

repeated to do more complex arithmetic. In modern computers, most ALUs are integrated 

within the processor and are capable of doing complex operations through clever programs.  

For this component, we will use chips called adders which take two values and returns their 

sum. These two values will be coming in from directly from the A and B registers. 

Technically, the ALU will be adding the values in the registers all the time, but we won’t be 

using the added value unless we want to. However, we can also set these chips to subtract 

two numbers through some clever use of binary logic. Therefore, we need our ALU to have 

a control signal that changes its mode from addition to subtraction. Lastly, we need another 

signal that enables the ALU’s output as we also don’t want to have it output data onto the 

bus all the time. With these parameters set, this is the basic design of the ALU: 

Binary Arithmetic 

Before building the ALU we should know how it works. As is mentioned above, the ALU 

makes use of chips called adders, so how does an adder take two 8bit values and add them 

together. The answer is of course through logic gates. First, let’s start simple, how do you 

add two separate binary digits? 

  



Well, it’s quite simple:  0 + 0 = 0 These are all the operations with two 1-digit binary numbers 

 0 + 1 = 1  

 1 + 0 = 1  

 1 + 1 = 0 Here the 1 is carried over to the next digit 

With this let’s add two more complicated numbers: 

 11110 (30 in decimal)  Here we see the same operations as above, just  

+10101 (21 in decimal)  repeated and using the numbers that are carried over 

110011 (51 in decimal) 

To figure out how to construct a circuit with logic gates that adds up two 1 digit binary 

numbers, it helps to see all the possible combinations of two bits that can be added:  

Ci  A B Sum 
0 0 0 0 0 
0 0 1 0 1 
0 1 0 0 1 
0 1 1 1 0 
1 0 0 0 1 
1 0 1 1 0 
1 1 0 1  0 
1 1 1 1 1 

 

The above diagram shows the logic circuit of a full bit adder where: A and B are the two 

inputs; Ci is the carry coming in; S is the sum of the two inputs and is shown in the table as 

the first (right) digit of the sum. Co is the carry coming out and is shown in the table as the 

second (left) digit of the sum. Here’s how this circuit works: 

First, we need to look at this as two separate operations, one to find the sum digit and the 

other to find the carry out digit. For the first 4 cases, Ci is a 0, we can see that the sum digit 

here is the same as the XOR gate’s logic table (the top-left XOR gate). Meanwhile, the 

output carry digit follows the same logic as an AND gate (the bottom most AND gate) so 

we connect one to the inputs.  

The next 4 cases have the carry digit as a 1. Here, the sum digit is simply the inverse of the 

previous four digits. With XOR logic, if one input is a 1 then the other will end up being 

inverted as the output, otherwise the second input remains unchanged. So in this case, if 

the carry in is a 1, then whatever comes out of the first XOR gate will be inverted in the 

second XOR gate, giving us our desired results. The output for the carry digit gets a little 

more complicated. In our table we see that when A and B are the same, the carry digit is 

also the same; this is the same as in an AND gate, so we can use the one that was used for 

the sum digit. However, when A and B are not equal the carry digit is always 1; this logic 

1 1 
1 

1

 

 

1 

 1 

 

0 

 

0 

 

0 

 

0 

 

1 

 1 

 
1 

 0 

 

1 

 1 

 
1 

 1 

 

1

 

 

0 

 

1 

 0 

 

1 

 



can be interpreted with first XOR gate used. We also need a second AND gate because we 

only want this output when the carry is a 1 as well. This is shown in the circuit diagram 

above with an example where the numbers in red is the data inputted processed to give the 

correct answer.  

This diagram above shows a 1bit adder because our inputs are both just one bit. In our 

computer, we use 8bit values, so we need an 8bit adder. An 8bit adder can be created by 

linking up multiple of these 1bit adders, connecting the Co output to the next adder’s Ci 

input like so: 

 

Getting the ALU to Subtract 

The 8bit adder isn’t the complete ALU that we want as it also needs to be able to subtract 

two numbers. In math, subtraction is the same as addition with one of the numbers being 

negative, therefore we don’t need a new circuit dedicated for subtraction. What we do 

need however, is a way of expressing negative numbers. The way that most computers do 

this is by taking the two’s complement of a binary number.  

The two’s complement of a number is it’s inverse plus 1. For example: 0101 becomes 

1010+1=1011. In two’s complement the most significant bit acts as the sign bit meaning if 

it’s a 1 then the number is negative and when it’s a 0 the number is positive. The reason 

computers use this method for representing negative numbers is because it’s the simplest 

method that works with the arithmetic explained above.  

To better show how this works, let’s say we wanted to subtract 11 from 25, in decimal this 

would be 25 +(-11) = 14. Now if we were to do this is binary it would be 011001 + the 

two’s complement of 01011 where the first digit is the signed bit. To do this calculation we 

first need to convert 11 into its two’s complement, so 01011 becomes 10100+1=10101. 

. . . 



Then we do the normal binary addition so to give us 11001 + 10101 = 101110. If we get rid 

of the last carry bit, we end up with 01110 which is 14 in binary. 

Building the ALU 

For the ALU, the computer will not use separate AND, XOR and OR gate, instead it will 

use the 74LS283 chip which holds a 4bit adder. Two of these chips will be linked to get the 

full 8bit adder.  

Pins 2,3,5,6,11,12,14,15. The input pins. As you can see on the schematic they come in pairs 

as they each add up to their respective output pins (e.g. A1 + B1 = S1). These pairs of pins 

will be connected to the values coming in from the A and B registers. 

Pins 1,4,10,13. The output pins. They are the sums of the input pins. For example, pins 5 

and 6 are the inputs that add up to the output at pin 4. The output pins will be connected 

to the bus through a 74LS245 chip which was also used to buffer the register’s outputs. 

Pin 7. The carry input. Here is where the carry from the first chip will enter into the second 

chip. This pin will also be used when subtracting two numbers because since we need the 

two’s complement, the ALU would add 1 to the beginning of every subtraction through the 

carry in. 

Finally, there is pin 9 which is the carry out pin. This pin is only used to transfer the carry 

bit onto the second adder chip. 



Using this chip, a basic diagram of the ALU can be drawn. In this diagram, the XOR gates 

are used to convert the B register’s outputs into two’s complements when the subtraction 

control signal is on. To show why XOR gates are used we need to look at the gate’s logic 

table:  

Say input A was the subtraction control signal and 

input B was data coming from the B register. If input 

A was off, then the output would remain the same 

as input B. However, is input A was on then the 

output would be the inverse of input B. So, the XOR 

gate gives us the inverse of the data coming from the B register only when the subtraction 

signal is on since it´s hooked up to all the gates. Otherwise, the B register data remains 

unchanged.  

This subtraction signal is also connected to the first adder’s carry input. This is done to add 

1 to the value only when this signal is on, giving us the two’s complement; an inverted 

number + 1 from the carry in. The XOR gates that will be used in this module can be found 

in the 74LS86. This chip includes 4 XOR gates, so 2 chips will be needed in total. One last 

thing to note is the 74LS245. This chip buffers the ALUs outputs, giving the computer 

control over when the ALU can output data.  

Input A Input B Output O 
0 0 0 

0 1 1 

1 0 1 

1 1 0 



With the ALU built, the A and B registers can now be connected to each of the ALU’s sets 

of inputs. 

 

j v       

  

Zoom in to see the 

diagram more clearly. 

Data Out connects to 

the bus. It is enabled 

with the control line. 
Be careful when connecting 

the adder’s outputs to the 

74LS245 so that the leads 

don’t get mixed up. 

The data inputs are 

labelled 1-8 for their 

respective register. Here, 

1 is the least significant bit. 

The second inputs for 

the XOR gates, and the 

Carry In for the first 

adder are connected 

together. 
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at the outputs to show 

the value stored in the 

ALU 



The RAM Module 

A computer’s Random-Access Memory is where all the data that is to be used in the 

execution of a program (including the program itself) is stored. Furthermore, while the 

program is running, new values can be saved into RAM to be used in operations later on in 

the program. While most computers nowadays have gigabytes of RAM, this one will only 

have 16 bytes in total. In modern computers, having more RAM allows your computer to 

run demanding programs more efficiently.  

RAM works by storing bits of data in long arrays, each row being multiple bits long, which 

in the case of this computer they will be 8bit binary numbers. RAM access each line of 

memory by having input and output enable lines connected to each row instead of 

connecting them to each individual bit. This means that a computer can read or write data 

one row at a time. 

For the breadboard computer, there are 16 rows of memory, each holding 8 bits, or a byte 

of data. Each set of 8 bits is called a word and they have an enable and write control line. 

This means that each word of RAM is like its own register, however, the main difference is 

that they’re accessed differently. Every word in RAM has its own address, a 4bit number (4 

bits because there are 16 bytes of RAM) through which the enable and write lines are 

accessed. The RAM module will have a series of inputs which tells itself to look in a particular 

address and retrieve information from it, these are the address lines.  

To take a 4bit number and enable its corresponding memory address, an address decoder 

is needed. The following diagram shows the basic principle of the address decoder: 



On the left, there are the 4 address lines, these are turned into two signals, the original and 

the inverse. On the right, there is a series of AND gates with multiple inputs. These AND 

gates allow the enable signal of an address to turn on if all its inputs are on. These inputs 

are the same as the address, just interpreted as inputs to electrical signals. For example, if 

we wanted to access the data at address 1100 first, the address lines would be set to 1100. 

This would cause A0, A1, A2̅̅̅̅  and A3̅̅̅̅  to go high. Only one out of all the AND gates would 

turn on, the one at address 1100 since those are its AND gate’s parameters. On this diagram 

there is a fifth input into the AND gates, this would be a master enable line for all the 

memory addresses and would be kept high at all times. Lastly, this diagram only shows 4 

addresses but of course, the full RAM module would have an address decoder for all 16 

words of data. 

Instead of constructing a RAM module out of individual parts, it’s easier and more efficient 

to simply use an existing chip that contains the storage and address decoder. This way space 

is reduced, and mistakes are minimized, plus who wants to build 8 separate registers each 

connected to four and gates. So to do this, the chip that will be used is the 74LS189.  

The 74LS189 

This chip is holds 64bits of RAM, which you may have noticed is not enough for 16 bytes of 

data. This means that we’ll simply have to use two of these chips, both accessed through 

the same address lines. 



 

 

Pins 1, 13-15. The address line pins. On the diagram above A0 is the least significant bit 

while A3 is the most significant bit. This is where the address to access each word of 

memory is inputted through. This will later be connected to the Memory Address Register 

which will keep track of where to get the data from RAM. 

Pins 4, 6, 10, 12. The data input pins. From these 4 bits of data are inputted to be stored in 

RAM. Data will be able to be inputted before and while the program is running. A series of 

DIP switches will be connected to these pins to program data beforehand. While the 

program is running, the inputs will come from the bus. 

Pins 5, 7, 9, 11. The output pins. These pins from both chips used will be connected to the 

bus. These pins output the inverse of the data stored, as seen on the diagram with the line 

over the output. To invert it back to normal, NOT gates (or inverters) will be placed after 

these pins before the signals go on the bus.  

Pin 2. The chip select. This pin acts line an output enable, which allows the data at the 

selected address to be outputted. Like in the previous modules, we want this to be on at all 

times, so we can see what’s stored in memory. This pin activates when it is low, so it will 

be connected to ground. Since this chip is always outputting data, we need a way to control 

when it goes out to the bus. For this, the 74LS245 buffer is used. 

Pin 3. The write enable. This pin allows data to be written into the address selected of 

memory. This pin will only be on when inputting data and will therefore act as a control 

signal for RAM’s output enable. Like the previous pin, this one also activates when low. 

  



  

Write Enable line will be 

connected to another 

circuit afterwards 

D1-8 are the data 

inputs where 1 is the 

most significant bits. 

They will be connected 

to another circuit 

The 74LS245’s outputs 

will also be connected 

to another circuit 

A1-4 are the address 

lines. They will be 

connected to the MAR 
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When using the 74LS189 chip we need to keep in mind that all the outputs are inverted 

within the chip. This means that we need to reinvert them back to their normal values using 

an inverter. To invert the output signals, we need to connect the outputs of the RAM chips 

to the inputs of the 74LS04 chips†; keep in mind that we are using 2 of both types of chip.  

With the now proper output signals, we need to connect them to the bus. But again, like in 

the previous modules we need to make sure that data being output from multiple modules 

doesn’t end up getting mixed up. For that, we use the octal bus transceiver which controls 

our outputs so that they’re only one when we need them to be (link to appendix). 

Therefore, we connect the outputs from the 74LS04 chips to the inputs of 74LS245 chips. 

This chip will also hold our output enable line, as pin 19 of the 74LS245 acts as the enable. 

Next, we need both chips to be set to the same address when accessing data, so we tie the 

address line pins of the two chips together. We also want the two chips to write data at 

the same time, so pins 3 from both chips will be connected together and then to a separate 

control line that will only be on when writing the programs. Lastly, the data inputs for the 

RAM chips will be directly connected to the input switches. 

† If you want to skip this step you can use the 74LS219 chip which doesn’t invert its outputs, 

however these chips are much more difficult to find.   

The Memory Address Register 

Together with the actual RAM, the computer needs a memory address register so that RAM 

know which address to output data. This computer accesses RAM at two separate times, 

before and during the execution of the program. When writing the program beforehand, 

we want to manually control which address the data that we’re inputting is going into. 

However, during the execution of a program we want to read or write data from an address 

automatically. This means we need two ways of accessing data from the MAR: one through 

user inputs and the other from the bus. The user input will be done through 4bit dip 

switches while the address coming from the bus will be stored in a 4bit register.  

To switch between two different inputs, we need a data selector. What this does is it takes 

two different inputs and based on a control line it will output one of the two inputs. This is 

done with the following series of logic gates: 

 

A B S O 

0 0 1 0 

0 1 1 0 

1 0 1 1 

1 1 1 1 

0 0 0 0 

0 1 0 1 

1 0 0 0 

1 1 0 1 



These logic gates output whatever input A is if the select (S) line is a 1. On the other hand, 

if the S is a 0 then this circuit outputs whatever input B is. The truth table on the right 

shows this. The way this works is that when S is a 1 then whatever is going into B’s and gate 

will be a 0, therefore, the OR gate’s output will equal A. The reverse is true when S is 0; 

A’s AND gate outputs a 0, meaning that the final output must equal whatever B is.  

The computer will utilize the 74LS157 chips which holds four of these data selectors, one 

for each bit in the memory address. With this chip each bit of the dip switches will be 

connected to their respective A input on the 74LS157, while the outputs of the 4bit register 

will be connected to their corresponding B inputs on the 2-to-1-line selector chip.  

Since the MAR uses a 4 bit register we need to use the 74LS173 chip. We previously used 

these chips when building the A, B and instruction registers. For this module the chip will 

be used in much the same way: The out enable pins will always be turned on (ground), the 

input pins will be connected to the bus, the clock pin will be connected to the clock signal, 

the load enable pins to a separate control signal and the clear will be off (ground). The only 

difference, is that this time the outputs will be connected to the selector chip (74LS157). 

To connect the dip switches to the 74LS157 chip, we connect one side of the switches to 

ground and the other side to the A inputs of the chip. The reason as to why we connect 

one side of the switches to ground is because when there is no input into the selector chip, 

it defaults to a 1. So therefore, if the switch is off, then the 74LS157’s input will be a 1 and 

if the switch is on then the input will be a 0 as it’s connected to ground. 

Now, to actually change between the dip switches and the 4bit register we use a double 

throw switch where the first pin of the switch is connected to pin 1 of the 74LS157 to select 

between the inputs. And the second pin is connected to ground. If the switch is on (away 

from the switches first pin) then the selector chip will output its B inputs and vice versa.  

To finish the memory address, register the only thing we have left to do is to connect the 

74LS157’s outputs to the RAM’s address lines. 

` 

  

Data In lines go 

to the least 

significant bits 

on the bus 

Data Out lines 

go to the RAM 

chips’ address 

pins 

The computer 

is in program 

mode when 

the right LED 

is on 

74LS173

 

74LS157 

The Mode 

Select line will 

be used in the 

next circuit 



Back to RAM 

The RAM chip will also be written with information from two locations: user input and the 

bus. Like for the MAR we will also need to use the 74LS157 chip two change between the 

two inputs. Since RAM uses 8bit words of data, we will need to use two of these chips in 

tandem.  

Connecting these chips is quite similar as with MAR: the output pins of the 74LS157 go to 

the data pins of RAM. We also use dip switches for the user input and these are connected 

in the same way, one side to ground the other to the A inputs. Lastly, we have the B inputs, 

these are connected to bus. Like in previous registers we will take the data from the bus 

using the same breadboard rows as the octal transceiver to reduce the space used. 

Next, we need a way to toggle between the two to write into memory. Once again, the 

74LS157 allows us to select when the write enable is on or off based on either the user 

input or the bus input. This time we only need one of the four selectors where the output 

goes into RAM’s write enable line. First, when writing data manually what we will need to 

do is set the memory address using the MAR dip switches, then the actual data using the 

RAM dip switches and then use a touch button that writes the data in. In our 74LS157, the 

A input will come from this button where one side of the button is connected to ground 

and the other to the input. 

Getting the B input for this selector is slightly more complicated. When writing data into 

memory from the bus we will have to use a control signal since we can’t manually do it 

while the program is running. However, we don’t want data to be written at the same time 

as the control signal goes high. Instead, we need data to be written on the upcoming clock 

pulse So what we do, is take the combination of the clock signal and RAM’s write enable  

signal using a NAND gate. We use a NAND gate because the write enable pin on the RAM 

chips is inverted, this isn’t an issue with the manual input because we connect the button to 

ground.  

Inside the 74LS00 there are four NAND gates from which we’ll only use one. The first input 

of the gate is from the control signal, the second input comes directly from the clock and 

the output goes into input B of the last 74LS157 chip that we’ve used.  

Lastly, the select pins for the three 74LS157s that we’ve used now are also connected to 

the same double throw switch used in the MAR. 

  



  

Mode Select line 

comes from the 

previous MAR circuit 

This line goes to the 

Write Enable pin on 

the RAM chips

 

The Output lines go 

to the RAM chips’ 

data inputs 
The Input lines come 

from the BUS. To save 

space, connect them to 

the 74LS245’s outputs 

from the first circuit in 

this module. 
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The Program Counter 

As we saw with the previous section, instructions are stored in RAM within separate 

addresses. When running a program, we want the computer to execute the program 

instructions in an orderly manner; first instruction 0, then 1, then 2 and so on. This is the 

program counter’s job, to keep track of which instruction comes next in the program. 

However, we don’t want to always be running instructions in a consecutive order. 

Sometimes we may want to jump backwards once it reaches a certain instruction to create 

a loop. Therefore, the program counter apart from just counting in binary, should also have 

an 4bit input which would be transferred to the MAR to access a previous instruction from 

RAM. 

The Binary Counter 

As is evident in the name, the program counter needs to be able to count numbers one by 

one. This program counter will only need to count from 0-15 in binary; this range is the 

same as the number of addresses in RAM.  

The way the binary counter works is with a series of JK flip flops hooked up to each other. 

JK flip-flops are little logic gate circuits with two inputs. One property that JK flip-flops have 

is that if both inputs are HIGH, then the output will switch on and off at every clock pulse, 

another way of saying this is the output being HIGH every other clock pulse. If we were to 

then connect this output to the clock of a second JK flip-flop while keeping both inputs 

HIGH so that it toggles the output, then the output of the second flip flop would change 

once every 2 clock pulses. If we do this two more times we can see how a 4bit binary 

counter has been created.  

 

 

 

 

 

 

 

 

 

 

 

 

Flip Flop 1 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 

Flip Flop 2 0 1 0 1 0 1 0 1 0 1 0 1 

Flip Flop 1 

Flip Flop 2

 
 Flip Flop 1 

Flip Flop 3 

Flip Flop 4 



Flip Flop 3 0 0 1 1 0 0 1 1 0 0 1 1 

Flip Flop 4 0 0 0 0 1 1 1 1 0 0 0 0 

In the above diagram you can see that as the flip flops’ outputs cycle, they alternate with a 

lesser frequency. As we go left to right in the diagram, and look at the edges of the square 

waves, we see that the flip-flops are counting in binary, with HIGH being a 1 and LOW a 0. 

In the table this is also shown. Note that flip flop #1 also changes between 1 and 0 but it 

isn’t shown in the table for clarity.  

The Program Counter’s Design 

To have a functional program counter that meets the computer’s needs, three control 

signals are needed. The first control signal is the program counter’s output line. This would 

output which instruction number that is to be executed into the 4 least significant bits of 

the bus. Next, to be able to input the instruction number that the program wants to jump 

back to, a jump line is needed. This jump line would act as an input enable which would put 

the 4 least significant bits from the bus to the program counter. Lastly, a count enable line 

is required. This line prevents the program counter from counting up at every clock tick. 

Each program instruction requires more than one clock tick, so we only want to increment 

the program once every instruction cycle. 

The 74LS161 

The central chip to this module is the 74LS161, which is a binary counter with some extra 

features that we will take advantage of to make the previously discussed control signals. 



Pin 1. The reset pin. Self-explanatory, this pin resets whatever value is being stored in the 

chip. It will be connected to power for the most part so that it isn’t activated, however, it 

will eventually be connected to a master reset switch. 

Pin 2. The clock pin. This pin is the input of the clock to make the counter run properly. It 

will be connected to the clock’s output. 

Pins 3-6. The input pins. These pins will enable the program counter to be able to jump to 

a certain number. Whatever is being inputted at these pins gets stored into the program 

counter which will then continue counting from that value. These pins will be connected to 

bus’s least significant bits. 

Pins 7-10. The count enable pins. For the count enable control signal we will use these two 

pins to control when the counter should be incrementing in value. For our purposes, these 

two pins will be hooked up together and then two a separate control line. 

Pin 9. The load enable. This pin allows the data coming in from pins 3-6 to be stored into 

the counter. From this pin we will connect the jump control line which will be connected 

to ground when we want it enabled and vice versa.  

Pins 11-14. The output pins. Since the chip doesn’t have any output enables and we need to 

control when data is coming out of the bus, the outputs will have to go through the buffer 

chip (74LS245). 

Pin 15. This pin would be used to connect multiple counters in series. Since we won’t need 

it, it will be connected to ground. 

To build the circuit connect the 74LS161’s pins as described above. For the output pins the 

74LS245 chip is needed. As mentioned in the beginning, refer to the chip’s data sheet to see 

how the chips work. This 74LS245’s inputs will come from the binary counter and the 

outputs will go to the bus. Pin 19 which is the output enable on the chip will also act as our 

last control line: the counter’s output enable. If we were to output the counter’s content 

to the bus then we would need pin 19 to be LOW (connected to ground); the opposite is 

true if we don’t want the output enabled. 

 

  



  

74LS04 74LS161 

The Output Enable line 

outputs the data stored 

in the program counter.  

The Counter Enable 

line simply increments 

the program counter. 

The Input Enable line acts 

as the jump signal, inputting 

whatever is on the bus to 

the program counter  

The Data inputs and output 

lines will be connected to 

the bus’s least significant bits  



The Bus 

When building the previous modules, most of the inputs and outputs have been connected 

to and from the bus. Through the bus, data from one module can be transferred to another. 

This computer’s bus will transfer 8 bits of data at a time since that’s how many bits most of 

our modules deal with. However, the bus should also allow for the possibility of only 

transferring 4 bits of data as that’s what’s used in the program counter and memory address 

register. 

Building the bus is quite different to the other modules because no chips are 

being used. In fact, this is probably the simplest module to build but is equally 

important in the computer. Since this computer uses breadboards, the power 

rails on the edges of them work well to transfer data up and down the 

components. By laying four of these side by side, we end up with 8 rails which 

transfer the 8 bits of data. Then, to extend the length of the bus to reach all 

the components, we simply have two of these power rail bunches and connect 

them together using some leads. 

Next, all the data lines of the bus need to be connected to a pull-down resistor 

so that they’re not left floating when only using 4 of the 8 bits. This can be 

done by connecting 10kΩ resistors at the top of the bus lines to the adjacent 

boards and then to ground. Furthermore, to visibly show what is currently on 

the bus, a series of LEDs can also be connected. This could be done in multiple 

ways: 

1. Have the positive end of the LED connected to the bus and the negative end to a separate 

power rail on top of the bus. From here, connect them to ground. 

2. Using leads, connect the data lines to some free space in a nearby board. Here, hook up 

some LEDs with the leads connected to the positive ends and the negative ends to ground. 

3. Connect the positive ends of the LEDs to the data lines and then solder the negative 

ends together. This would then be connected to ground. Keep in mind that this method 

requires a soldering iron. 

With the bus done, all that is left is to connect all the components to it. When doing this 

make sure not to cross any of the inputs or outputs. The program counter and MAR should 

be connected to the least significant bits (the right most) of the bus. 
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The Control Logic 

Lastly, there is the control logic: the brains of the computer. Here, all the modules are told 

what to do and when to do it so that a program is run. In a computer, the control logic is 

the module that enables the program inputted by the user, to run the way it’s supposed to. 

By connecting the modules’ control lines to the control logic and then manipulating them 

based on certain patterns of data, the computer takes series of 1s and 0s to run complex 

programs. 

An overview of the control signals: 

For the computer to be able to perform these instructions, it must do so by setting the 

various control signals on and off. In total, for all the modules in this computer there are 15 

control signals. These are shown in the following diagram: 

MI – Inputs the 4 least significant bits from bus to the MAR 

RI – Inputs 8 bits from bus to RAM 

RO – Outputs 8 bits from RAM to bus 

II – Inputs 8 bits from bus to the instruction register 

IO – Outputs the 4 least significant bits from the instruction register to bus 

AI – Inputs 8 bits from bus to the A register  

AO – Outputs 8 bits from the A register to bus 

BI – Inputs 8 bits from bus to the A register 

OI – Inputs 8 bits from bus to the output register 

ΣO – Outputs 8 bits from the ALU to bus 

SU – Sets the ALU to subtract the A and B registers 

CE – Enables the program counter, essentially incrementing it 

CO – Outputs the 4 least significant bits from the program counter to bus 

J – Inputs the 4 least significant bits from bus the program counter, thus jumping to a 

different instruction 



It is better for this computer to have all the control signals close together so that they are 

more easily accessed. Therefore, the computer will have a breadboard in which all the 

signals can be accessed through and also visualized via LEDs. However, there is a slight issue: 

some of the control signals are activated when they’re set to LOW. It is simpler for us to 

deal with the control signals when they’re all activated when HIGH. This means that we will 

have to run those control signals through an inverter so that they activate when HIGH.  

When connecting the control signals to the breadboard, do so in this order so as to not 

mix them up later on: MI|RI|RO|II|IO|AI|AO|BI|OI|ΣO|SU|CE|CO|J|HLT. 

The signals that are highlighted need to be inverted. 

The Instruction Set 

Before building this module or even learning how it works, we first need to figure out what 

are the instructions that the computer can perform and how will it do so using the other 

modules’ control lines. The list of instructions is the following: 

NOP (0000) – The “no operation” instruction. This instruction doesn’t do anything it simply 

skips to the next instruction in the program. However, the computer still needs to go 

through the process of fetching the instruction and advancing the program counter.  

LDA (0001) – The “load A” instruction. This instruction takes a value from memory and 

transfers it to the A register. This instruction also requires a 4 bit parameter which is the 

address from which memory should be retrieved to then transfer it to the A register. If we 

had an instruction in a program that said LDA 10, the number 10 wouldn’t be loaded into 

register A, instead whichever value was stored in address 10 would be loaded to the 

register.  

ADD (0010) – The “add” instruction. This instruction takes the value stored in the A 

register and adds another value stored in RAM. Therefore, this instruction also requires a 

parameter, the address of the value that you’re adding. When using this instruction, the 

computer should load the value in the wanted address to register B and then add the values 

together. This added value is then outputted to the A register.  

SUB (0011) – The “subtract” instruction. This instruction subtracts a value stored in RAM 

from the value stored in the A register. This value in RAM is accessed through another 4 

bit parameter which points to the address of the wanted value and is then sent to the B 

register. The subtracted value is outputted from the ALU and into the A register. 

STA (0100) – The “store A” instruction. This instruction stores a value from the A register 

into an address in RAM. This address is also accessed through a 4 bit parameter in the 

instruction. 

LDI (0101) – The “load immediate” instruction. This instruction stores a 4 bit value into the 

A register without accessing RAM. The instruction holds a 4 bit parameter which is then 

directly transferred to the A register. Since this value is stored in the instruction itself it can 

only be 4 bits long. 



ADI (0110) – The “add immediate” instruction. Similarly to the previous instruction, this 

instruction adds a value directly, without the need to access RAM. This works by sending a 

4 bit value to the B register to then be added together. The sum of the two values is 

outputted to the A register. 

SBI (0111) – The “subtract immediate”. This instruction subtracts a 4 bit number from the 

A register and outputs it back to that register. Again, this 4 bit value comes from the 

instruction’s parameter which is then loaded into the B register.   

JMP (1000) – The “jump” instruction. This instruction sets the program counter to a 

different value which then causes the MAR to access the instruction set at the value which 

was set. Basically, this instruction jumps backwards or forwards to another instruction in 

RAM. 

OUT (1110) – The “output” instruction. This instruction outputs a value. It takes the data 

stored in the A register and transfers it to the output register. 

HLT (1111) – The “halt” instruction. This instruction stops the program to continue 

running. This is done by activating the halt line set into the clock module. 

 

When programing code into the computer we would write the sequence of instructions 

into memory. However, we can’t just write LDA 12 into memory, instead each instruction 

has its own binary “code name”. You can see above that each instruction has its own 4 bit 

number, 0001 would be interpreted as the LDA instruction, turning on the necessary 

control signals to perform said instruction. The instructions’ parameters, like the address in 

LDA, would be written after the “code name” to make a full 8bit binary number that can 

be written into memory. Using the same example, LDA 12 would be written into RAM as 

0001 1100. This binary number can now be inputted with the dip switches that were set up 

in the RAM and MAR modules. 

 

Microinstructions  

Each instruction that the computer can perform, is done through microinstructions. These 

microinstructions set the control signals on and off. So through a series of microinstructions, 

the actual program instructions are performed.  

Let’s take the load A instruction. To perform this instruction, first, we output the program 

counter and input this value into the MAR; this tells the computer which instruction to 

retrieve. Then we output the value in RAM stored at that address and input it into the 

instruction register; this transfers the instruction to the instruction register so that it can 

then be evaluated by the control logic. After that, we increment the program counter by 

enabling it so that the next instruction can be fetched from the proper address. The next 

step is to output the instruction register and input the MAR. Note that the instruction 

register can only output 4 bits, these are the parameters that were mentioned when 

explaining the instructions. In this case the 4 bits set the address from which to fetch the 

data from RAM. Lastly, we output the value in RAM from the address that was set in the 

previous step, and input it into the A register.  



This series of steps can be expressed like so: 

CO|MI  Program Counter Out, MAR In 

RO|II  RAM Out, Instruction Register In 

CE  Program Counter Enable 

IO|MI  Instruction Register Out, MAR In 

RO|AI  RAM Out, A register In 

The first three microinstructions are found in every instruction. They fetch the program 

from memory and advance the program counter. The last two instructions are unique to 

the LDA instruction. Now, we find out the unique microinstructions for the rest of the 

program instructions.  

NOP  

No unique microinstructions. 

ADD 

IO|MI  Instruction Register Out, MAR In 

RO|BI  RAM Out, B register In 

ΣO|AI  ALU Out, A register In 

First, the memory address is set with the first microinstruction, then RAM is transferred to 

the B register, and finally the ALU’s sum is outputted to the A register. There is no 

microinstruction telling the computer to add the numbers as the ALU does that 

automatically. What is needed however, is a microinstruction telling the ALU to output its 

value to the A register (shown in the third microinstruction) 

SUB  

IO|MI  Instruction Register Out, MAR In 

RO|BI  RAM Out, B register In 

SU|ΣO|AI Subtract Enable, ALU Out, A register In 

The process here is the same as above, the only difference is that we enable the “subtract” 

control line. Note that the last microinstruction enables three control lines at the same 

time. Since they don’t interfere with each other it causes no problems. 

STA 

IO|MI  Instruction Register Out, MAR In 

AO|RI  A register Out, RAM in 

Here we see the only instance of the RAM In control line being used in this set of 

instructions. The first microinstruction sets the memory address to the one where data is 

stored. The second microinstruction transfers the data over. 

LDI 

IO|AI  Instruction Register Out, A register In 

This instruction is very simple, the only thing required is the instructions parameter to be 

transferred to the A register.  



ADI  

IO|BI  Instruction Register Out, B register In 

ΣO|AI  ALU Out, A register In 

This instruction combines the ADD and LDI instructions where it loads the instructions 

parameter directly to the B register and then outputs the ALU’s sum to the A register. 

 SBI 

IO|BI  Instruction Register Out, B register In 

SU|ΣO|AI Subtract Enable, ALU Out, A register In,  

Same as above with the exception of the subtract enable line. 

JMP 

IO|J  Instruction Register Out, Jump Enable 

Another simple instruction where this time the computer outputs the instruction’s 

parameter to the program counter so that the next instruction is fetched from a different 

memory address. 

OUT 

AO|OI  A Register Out, Output Register In 

This instruction transfers the value in the A register to then be sent out to the output 

register where the user reads it. 

HLT 

HLT  Halt Enable 

The only thing this instruction does is enable the halt line, so the clock stops and the 

program no longer runs. 

 

The Microinstruction Counter 

Like the program counter which keeps track of which instruction is being executed next, 

the control logic needs a counter that makes the microinstructions run one-by-one. This is 

where we use the 74LS161 chip which is the same binary counter that we used in the 

program counter. The 74LS161 counts from 0-15, this allows the instruction to have up to 

16 microinstructions within it. However, this computer’s instructions only need 6 at the 

most, so only the first three of the chip’s outputs are used. When connecting this chip make 

sure to set the Load pin (we won’t be loading values into the counter) and the Enable pins 

to HIGH.  

For the programs to run smoothly the computer should set up the control lines in between 

clock cycles, this way the microinstruction will be set up before it’s run by the computer. 

So it should enable the control lines and once the clock ticks the other modules should 

activate to run the microinstruction. This can be done by inverting the clock using the 

74LS04 chip and have the output go into the counter’s Clock pin.  



(revise this paragraph) Instead of having the counter count in binary, it will be more useful 

to have it count as a series of outputs, where one turns off, then the next one turns off and 

so on. This can be done with a decoder chip which takes the binary numbers and turns off 

one of its outputs. For example: 101 activates the 5th output. By connecting this decoder to 

the binary counter, we get a series of outputs turning going LOW in series. The 74LS138 

chip takes a 3bit binary number and turns on one of its 8 outputs.  

 

Pins 1-3. The input pins. These pins are where the binary number is inputted. They are 

connected to the binary counter’s first three outputs. 

Pins 4-6. The enable pins. These pins enable various things on the chip. We want them to 

be all activated so set pins 4 and 5 to ground and pin 6 to power.  

Pins 7, 9-15. The output pins. These are the chip’s output after the binary number has been 

decoded. 

 

With this chip in place you’d be able to see how the outputs turn off (they’re inverted) one 

at a time from Y0 to Y1. These are 8 counts in total, but our instructions only take 6 

microinstructions to complete at maximum. So to make the computer faster we can get rid 

of those last two steps by tying Y6 to the Clear pin on the binary counter chip. We can 

further optimize this process by combining the last two microinstructions of the fetch cycle 

like so: 



Originally you had RO|II, CE but this can be shortened to be on the same 

microinstruction to become RO|II|CE. This saves us an extra tick allowing us to connect 

the counter’s Clear pin to Y5 (pin 10). Now instructions that would take 6 clock ticks, 

would only take up 5, let’s call the clock ticks T0 – T4.   

The first two clock ticks of every instruction do the same thing, the T0 gets the memory 

address (CO|MI) and T1 inputs the data from RAM into the instruction register and 

advances the program counter (RO|II|CE). Therefore, we can tie T0 of the instruction 

cycle to always activate the CO and MI control signals. Similarly, we can also tie T1 to always 

activate its respective control signals. 

The computer counts the instruction steps through the decoder chip. So the first step 

happens whenever T0 goes LOW since the output is inverted. This means that we now 

need to invert the T0 and T1 signals using the same 74LS04 inverter chip that we used to 

invert the clock signal. Then, the now inverted output can be directly hooked up to the 

proper control signals so that whenever T0 or T1 go off, the microinstructions for the fetch 

cycle are activated.  

 

 

 

Combinational Logic Using Memory 

With the microinstruction counter figured out, one issue still remains. How does the 

computer know that at a specific step in the instruction cycle it needs to turn on a control 

line based on the instruction given? For example, if we wanted to run the LDA instruction, 

74LS161

 

74LS04 74LS128

 

The T0 and T1 outputs 

will go to the appropriate 

control lines 

This circuit will then be 

hooked up to two EEPROM 

chips, explained in the next 

sections 



how would the computer process the instruction given to turn on the IO|MI control 

signals at the third step.  

One way of doing this, would be to use really complicated circuits with logic gates, where 

all the possible combinations have to go through its own set of logic gates. This method 

however, would take up a lot of space and has a lot of room for error when wiring the 

circuit. Instead, this computer will achieve the same function through the use of memory.  

In memory the computer would have stored all the outputs for every instruction, and you 

would access this data by setting the memory addresses to a combination of the instruction’s 

“code name” and the step that the computer is running. Here’s how this would work: 

Say our instruction was to load address 12 from RAM to the A register  LDA 12. This is 

programmed into RAM as 0001 1100. The control logic only cares about the first four bits 

of the code as they tell the computer which instruction is needed.  

The first microinstructions of the fetch cycle are automatically done above as they’re already 

connected to the proper control lines, meaning that only the last three ticks are left. So in 

memory we would need three addresses for each instruction, which would then activate 

the proper control lines.  

These addresses would be inputted as a combination of the instruction’s “code name” and 

whether the computer is running T2, T3 or T4. The address for LDA at T2 would be: 

0001 010 

 

 

At this address, a 16bit value would be stored. Each bit of this value, except the last one, 

represents one of the 15 control signals, therefore at the above address, a 1 would be 

stored for the IO and MI bits. The order in which the control signals will be represented 

as the bits, will be the same as the one laid out on the breadboard where all the control 

lines are connected:  MI|RI|RO|II|IO|AI|AO|BI|OI|ΣO|SU|CE|CO|J|HLT. 

Thus, at T2 for instruction LDA, 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 would be stored at address 

0001 010. The following table is used to better show the addresses and their corresponding 

data since that long sequence of 1s and 0s doesn’t really mean anything to our human eyes. 

  

Instruction 

“code name” 

T2 in binary (first two 

ticks are discounted)  
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 0 0 0 0 
 

0 1 0 
 

0 0 0 0 0 0 0 0 
 

0 0 0 0 0 0 0 0     

NOP 0 0 0 0 
 

0 1 1 
 

0 0 0 0 0 0 0 0 
 

0 0 0 0 0 0 0 0     

 0 0 0 0 
 

1 0 0 
 

0 0 0 0 0 0 0 0 
 

0 0 0 0 0 0 0 0     

 
                

 
         

    
 0 0 0 1 

 
0 1 0 

 
1 0 0 0 1 0 0 0 

 
0 0 0 0 0 0 0 0  MI IO  

LDA 0 0 0 1 
 

0 1 1 
 

0 0 1 0 0 1 0 0 
 

0 0 0 0 0 0 0 0  RO AI  

 0 0 0 1 
 

1 0 0 
 

0 0 0 0 0 0 0 0 
 

0 0 0 0 0 0 0 0     

 
                

 
         

    
 0 0 1 0 

 
0 1 0 

 
1 0 0 0 1 0 0 0 

 
0 0 0 0 0 0 0 0  MI IO  

ADD 0 0 1 0 
 

0 1 1 
 

0 0 1 0 0 0 0 1 
 

0 0 0 0 0 0 0 0  RO BI  

 0 0 1 0 
 

1 0 0 
 

0 0 0 0 0 1 0 0 
 

0 1 0 0 0 0 0 0  ΣO AI  

 
                

 
         

    
 0 0 1 1 

 
0 1 0 

 
1 0 0 0 1 0 0 0 

 
0 0 0 0 0 0 0 0  MI IO  

SUB 0 0 1 1 
 

0 1 1 
 

0 0 1 0 0 0 0 1 
 

0 0 0 0 0 0 0 0  RO BI  

 0 0 1 1 
 

1 0 0 
 

0 0 0 0 0 1 0 0 
 

0 1 1 0 0 0 0 0  ΣO AI SU 

 
                

 
         

    
 0 1 0 0 

 
0 1 0 

 
1 0 0 0 1 0 0 0 

 
0 0 0 0 0 0 0 0  MI IO  

STA 0 1 0 0 
 

0 1 1 
 

0 1 0 0 0 0 1 0 
 

0 0 0 0 0 0 0 0  RI AO  

 0 1 0 0 
 

1 0 0 
 

0 0 0 0 0 0 0 0 
 

0 0 0 0 0 0 0 0     

 
                

 
         

    
 0 1 1 0 

 
0 1 0 

 
0 0 0 0 1 1 0 0 

 
0 0 0 0 0 0 0 0  IO AI  

LDI 0 1 1 0 
 

0 1 1 
 

0 0 0 0 0 0 0 0 
 

0 0 0 0 0 0 0 0     

 0 1 1 0 
 

1 0 0 
 

0 0 0 0 0 0 0 0 
 

0 0 0 0 0 0 0 0     

 
                

 
         

    
 0 1 1 1 

 
0 1 0 

 
0 0 0 0 1 0 0 1 

 
0 0 0 0 0 0 0 0  IO BI  

ADI 0 1 1 1 
 

0 1 1 
 

0 0 0 0 0 1 0 0 
 

0 1 0 0 0 0 0 0  ΣO AI  

 0 1 1 1 
 

1 0 0 
 

0 0 0 0 0 0 0 0 
 

0 0 0 0 0 0 0 0     

 
                

 
         

    
 1 0 0 0 

 
0 1 0 

 
0 0 0 0 1 0 0 1 

 
0 0 0 0 0 0 0 0  IO BI  

SBI 1 0 0 0 
 

0 1 1 
 

0 0 0 0 0 1 0 0 
 

0 1 1 0 0 0 0 0  ΣO AI SU 

 1 0 0 0 
 

1 0 0 
 

0 0 0 0 0 0 0 0 
 

0 0 0 0 0 0 0 0     

 
                

 
         

    
 1 0 0 1 

 
0 1 0 

 
0 0 0 0 1 0 0 0 

 
0 0 0 0 0 0 0 1  IO J  

JMP 1 0 0 1 
 

0 1 1 
 

0 0 0 0 0 0 0 0 
 

0 0 0 0 0 0 0 0     

 1 0 0 1 
 

1 0 0 
 

0 0 0 0 0 0 0 0 
 

0 0 0 0 0 0 0 0     

 
                

 
         

    
 1 0 1 0 

 
0 1 0 

 
0 0 0 0 0 0 1 0 

 
1 0 0 0 0 0 0 0  AO OI  

OUT 1 0 1 0 
 

0 1 1 
 

0 0 0 0 0 0 0 0 
 

0 0 0 0 0 0 0 0     

 1 0 1 0 
 

1 0 0 
 

0 0 0 0 0 0 0 0 
 

0 0 0 0 0 0 0 0     

 
                

 
         

    
 1 0 1 1 

 
0 1 0 

 
0 0 0 0 0 0 0 0 

 
0 0 0 0 0 0 1 0     

HLT 1 0 1 1 
 

0 1 1 
 

0 0 0 0 0 0 0 0 
 

0 0 0 0 0 0 0 0     

 1 0 1  0 
 

1 0 0 
 

0 0 0 0 0 0 0 0 
 

0 0 0 0 0 0 0 0     

Instruction 

HLT 

Memory Address Memory Contents 



EEPROM 

The type of memory that the computer will use to store all this data is called EEPROM, 

which stands for “Electrically Erasable Programable Read-Only Memory”. EEPROM is read-

only meaning that you can’t write data into it while the program is running. ROM memory 

is the kind that you would find in video game cartridges or discs where the computer can 

only read data from it but can’t change anything. The “Electrically Erasable Programable” 

part means that we can input data into it and then change it at a different time.  

A 28C16 EEPROM chip will be used by this computer. This chip has more than enough 

memory to accommodate the 7bit addresses that are needed, but the data itself is stored 

in words that are only 8bits long whereas the computer needs 16-bit words to 

accommodate all the control signals. This means that we’ll have to do the same thing as with 

the RAM module, use two chips that are accessed with the same address.  

The 25C16 EEPROM 

Pins 1-8, 22, 23, 19. The address pins. Through these 

pins the memory addresses will be inputted. Only 

pins 2-8 will be used as we only need 7 bits for the 

addresses. 

Pins 9-11, 13-17. The input/output pins. These pins 

are used to program data into the chip and then 

retrieve that data once the computer is running. 

Whether the chip is inputting, or outputting is based 

on the output and write enable pins. 

Pin 18. The chip enable pin. This pin allows itself to 

be used when LOW, so it will always be connected 

to ground. 

Pin 20. The output enable pin. This pin allows data 

to be outputted through the I/O pins. To output data 

the pin should be LOW and the input data it should 

be HIGH. When hooked up to the computer it 

should stay connected to ground. 

Pin 21. The write enable pin. When this pin is brought HIGH, the whatever is coming 

through the I/O pins is saved into the address selected. Once in the computer it will stay 

connected to power. 

Programing the 25C16 EEPROM 

Before connecting the chip to the computer itself, the data needs to be programed in. This 

will be done using dip switches to control the addresses and then jumper leads to input the 

data easily. When programing the chip, it helps to connect the I/O pins to LEDs so that you 

can see the data that you’re inputting, but this step isn’t required. Between the LEDs and 

the I/O pins hook up some jumper cables, these will be brought HIGH or LOW based on 

what we want to input.  



Then, the address pins would be connected to the dip switches, where the ON side of the 

switches is connected to 5V and the OFF side to ground through a 1kΩ resistor(this way 

the data defaults to a 0). Since the computer only needs 7bit addresses, pins A7-10 can be 

connected to ground. Next, the chip enable pin should be connected to ground and the 

output enable to power. The output enable pin can be brought LOW to see the data stored 

in the chip but not while inputting data. Lastly, the write enable pin should be connected to 

a push button that would be pressed to store the data being inputted.  

However, the chip’s data sheet specifies that to input data, the write enable pin should only 

be LOW for between 100-1000 nanoseconds. Considering that 1000 nanoseconds is very 

little time to push a button, we can connect a 1nF capacitor and a 470Ω resistor in series in 

front of the push button with the lead connected to the write enable pin in between (this 

is shown more clearly in the diagram below). A second resistor is also needed to discharge 

the capacitor on its other side. This little circuit stops electricity from flowing through the 

capacitor for 470 nanoseconds. 

 

With this set up you can program the EEPROM by first selecting the address with the dip 

switches, then manually connecting the input leads to either ground or power based on the 

data required, and then pressing the push button. When connecting the I/O pins they should 

follow the same order that was laid out: 

MI RI RO II IO AI AO BI  OI ΣO SU CE CO J HLT Gnd. 

I/O7 I/O6 I/O5 I/O4 I/O3 I/O2 I/O1 I/O0  I/O7 I/O6 I/O5 I/O4 I/O3 I/O2 I/O1 I/O0 

 

Make sure to switch out the EEPROM chips to program the full 16 bits of data. 

Chip 1 Chip 2 

EEPROM 



Connecting the EEPROMs 

With both 25C16 chips programed, they can now be connected together with the rest of 

the computer. The A0-2 address pins are to be connected to the binary counter’s outputs, 

the A3-6 address pins should be connected to the instruction register, and the other address 

pins should be connected to ground since they won’t be changing. The I/O pins connect to 

the control lines following the order laid out above. Finally, the write enable pin goes to 5V, 

and the output and chip enables go to ground.  
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Programing the Computer 

Instructions are inputted into the computer through a series of dip switches connected to 

RAM. What the user would have to do is first set the computer to Write mode with the 

two-state switch in the RAM module, input the proper memory address and then input the 

instruction with the binary code. A simple program that could be inputted is the addition of 

two numbers.  

Say we wanted to add 67 and 29: 

Instruction Memory Address Data in RAM 

LDA 4 0000 0001 0011 

ADD 5 0001 0010 0100 

OUT 0010 1110 0000 

HLT 0011 1111 0000 

Data 0100 01000011 (67) 

Data 0110 00011101 (29) 

The inputs for the memory address and the data are shown in the table above. We would 

have to manually set the dip switches ON or OFF for each instruction. Once the program 

is written, the computer would be set to Run mode and the clock would be started. The 

output would show 01100000 or 96 in decimal.  

Now, let’s try a more complicated program like outputting the Fibonacci sequence. This 

sequence is an infinite list of numbers where the next number is equal to the sum of the 

two previous ones: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34… A computer can create the Fibonacci 

sequence by having three variables, the first two adding to the next and then the values 

cycling between the variables like so: 

x  y y  z z  x + y 

0 1 1 

1 1 2 
1 2 3 

2 3 5 

3 5 8 

5 8 13 

8 13 21 

The table shows how to output the Fibonnacci sequence, first x is set to 0 and y is set to 1. 

Then, z is set to the sum of x + y, x is set to y’s value and y is set to z’s value; this process 

is then looped. In our program we want the computer to output x’s changing values as x is 

the only variable with the full sequence starting from 0.  

Next, this process needs to be written with our computer’s instructions and then converted 

to the binary code to be inputted into RAM.  

 

 



 Instruction  Memory Address Data in RAM 

1. LDA 10 Load x 0001 0001 1010 
2. OUT Output x 0010 1110 0000 

3. ADD 11 Add y to x 0011 0010 1011 

4. STA 12 Store the sum to z 0100 0100 1100 

5. LDA 11 Load y 0101 0001 1011 

6. STA 10 Set x to y’s value 0110 0100 1010 

7. LDA 12 Load z 0111 0001 1100 

8. STA 11 Set y to z’s value 1000 0100 1011 

9. JMP 1 Jump to the beginning 1001 1000 0001 

10. Data for ‘x’  Begins by setting x to 0 1010 0000 0000 

11. Data for ‘y’ Begins by setting y to 1 1011 0000 0001 

12. Data for ‘z’  1100 0000 0000 

If we were to input this program into the computer, we would see the output show the 

Fibonacci numbers until reaching a number greater than 255 which is the most the output 

can show. This computer doesn’t have a way of detecting whether the number is greater 

than 255 so the computer would keep going unless the clock is stopped.  

 

✦ ✦ ✦ 

  



The Finishing Touches 

Reset Switch 

At this point the computer is basically finished, you can program code in through RAM and 

run it, giving you the expected answer. However, to run that program again or run a 

different one, you would need to reset all of the components one at a time. This is really 

inconvenient so it’s easier to have a master reset switch that clears all the modules. The 

way this will work is by having a push button that defaults to LOW so that when it’s pressed 

a reset signal will go HIGH clearing all the registers. 

While the reset switch may sound simple there are three different reset lines that the 

computer has. The first is a reset that clears the components when turned HIGH, the 

second acts the same way but clears other components when turned LOW (the program 

counter for example resets when brought LOW). The last reset line only clears the control 

logic’s step counter since the binary counter is already connected to the T5 output. The 

following circuit shows how the reset line would be created: 

 

 

The pull-down resistor defaults the basic reset line to LOW so that it isn’t active all the 

time. The buffer (triangle without the circle) simply allows the button to turn on the Reset 

line which will be connected to the computer’s components. The NOT gate inverts the 

signal so that it goes LOW when the button is pressed. Lastly, both the Reset̅̅ ̅̅ ̅̅ ̅ and the T5̅̅̅̅  

lines default to HIGH, thus allowing current to pass through the AND gate. Only when 

either of the two signals go LOW does the AND gate output LOW, causing the Step 

Counter Reset to activate.  

To make this circuit use up less chips, we can change the buffer to have two inverters in 

series. The three total inverters can be found in the 74LS04 chip used in the control logic 



and the 74LS08 chip (AND gates) used for the clock can be taken advantage of to complete 

the circuit.  

Make sure that: 

Reset goes to MAR, A register, B register, Instruction Register, Output Register 

Reset̅̅ ̅̅ ̅̅ ̅ goes to Program counter. 

Step Counter Reset̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ goes to the reset pin (pin 1) on the control logic’s binary counter.  

 

Power Supply 

For a power supply you can use anyone that outputs 5V. Most phone chargers output 5V 

but to use it you would have to strip the wire and solder the connecting so that they fit the 

breadboard. Dedicated breadboard power supplies also exist or even the power output of 

a micro controller can be used. 

 

✦ ✦ ✦ 

  



Further Additions to the Computer 

The computer that this guide shows how build can be used to do basic computations. To 

further improve this computer to make it more user friendly or improve its usefulness, 

there are various additions that can be made to the computer.  

1. Instead of having a binary output, the computer’s output register can be connected 

to a decimal segment display (the ones you would find in a cheap calculator). This 

addition would require combinational logic like the one used for the computer’s 

control logic using the EEPROMs.  

2. Another possible expansion is to have more instructions for the computer, which 

would allow for more complicated programs. One of these possible expansions is 

the conditional jump. This instruction would jump to another instruction if an event 

happened; for example, if the ALU returns a negative number, a 0 or a number 

greater than 255. The conditional jump is extremely useful and can be implemented 

quite easily.  

3. By increasing the amount of RAM, longer programs could be stored in memory. 16 

bytes of RAM is enough for basic calculations but not enough for complex programs. 

Along those lines, instead of the components only using 8bits of data, you could 

increase that number.  

4. A more practical expansion is to remove the program counter enable control line 

so that it doesn’t become part of the microinstruction. Instead of every instruction 

enabling the program counter, it could simply be incremented automatically at the 

end of every instruction. 

5. If you found programing the EEPROM manually very tedious, then you could find a 

way of doing it using a microcontroller. There are even pre-built devices that are 

specifically made to program EEPROMs. 

6. Apart from the previous example, there are many other ways of implementing 

modern microcontrollers like the Raspberry Pi or an Arduino. These devices could 

be used to input programs using a keyboard instead of the DIP switches. They could 

also be used to hook up the output to a monitor while converting the binary output 

to a more user friendly decimal based output.  

 

✦ ✦ ✦ 

  



 

Materials 

Item Quantity Modules 

Breadboard 14-15 All 

Wire - All 

2-State Switch 2 Clock, RAM 

Momentary Push Button 2 Clock RAM 

4-position DIP switch 1 RAM, Control Logic 

8-position DIP switch 1 RAM, Control Logic 

(can be switched out to program the 

EEPROM) 

Various Color LEDs - All 

220Ω Resistor 2 RAM 

470Ω Resistor 15 Bus, Control Logic 

1kΩ Resistor 3 Clock, RAM 

10k Resistor 15 Bus, Control Logic 

100kΩ Resistor 2 Clock 

1MΩ Resistor 1 Clock 

0-1MΩ Potentiometer 1 Clock 

1nF Capacotor 1 Control Logic 

10nF Capacitor 1 Clock, RAM 

100nF capacitor 2 Clock 

1µF Capacitor 2 Clock 

555 Timer 1 Clock 

74LS00 – NAND gates 2 RAM 

74LS04 – Inverters 4 Clock, RAM, Control Logic 

74LS08 – AND gates 3 Clock, Output 

74LS86 – XOR gates 2 ALU 

74LS138 – Binary Decoder 1 Control Logic 

74LS157 – 2-to-1 line select 4 RAM 

74LS161 – 4bit binary counter 4 Program Counter, Control Logic 

74LS173 – 4bit register 7 RAM, Registers 

74LS189 – 64bit RAM 2 RAM 

74LS245 – Bus Transceiver 6 Registers, ALU, RAM, Program 

Counter 

74LS283 – 4bit adder 2 ALU 

28C16 EEPROM 2 Control Logic 

 

This list of materials is not completely accurate as I made it before making the final design 

of the computer. Therefore, there may be some extra pieces or some that are missing. 

  



Conclusion 

By reading through this guide and building the 8bit breadboard computer, you will hopefully 

have learned the basics of computer science. Instead of computers being shrouded in 

mystery, you will now realize that they’re machines which contain many smaller components 

that work elegantly to provide the user with their desire. 

While it’s true that most, if not all modern computers don’t resemble the one made in this 

project, they do share many similarities. Think of this breadboard computer as being the 

bare-bones skeleton that is used to teach how the body holds itself up. Sure it can’t perform 

most of the functions that we need today, but it’s still a good teaching tool that shows you 

how changing a couple of switches can give you the answers to mathematical problems.  

Through this computer you will have learnt the basics of computer architecture, what 

different components are needed to perform a task and how they’re used to run a program. 

Many of the modules built in this project can be found in your everyday laptop, they’re just 

bigger and more complicated.  

You will also have learnt how computers execute programs. Even if you learn how to code 

nowadays, you probably wouldn’t know that every instruction is made up of even smaller 

instructions, which manipulate various control lines, moving data around multiple 

components. The “programming language” used in this computer is called machine language 

and is the foundation for all modern programming languages. Languages like C have 

instructions that are then translated into machine language which the computer can 

understand.  

There are many resources online that you can find that explore these computer science 

concepts at a deeper level. Ultimately, by reading this guide I hope that you’ve gained 

knowledge in this subject and have become interested to continue learning about it. 

 


