
A Guide to Making an
8bit Breadboard

Computer and the
Basics of Computer

Science
BY: PABLO LANZA

Table of Contents:

Introduction

The Basics of Computer Science

Component Overview

Making the Computer

3

4

8

11

The Clock

The Register

12

15

The ALU

The RAM Module

21

27

The Program Counter

The Bus

35

39

The Control Logic

Programing the Computer

41

54

Finishing Touches

Further Additions

Materials

56

58

59

Conclusion 60

Introduction

Our modern everyday lives would be completely different, if not impossible without the

invention of the computer. Just imagine having to go to the library looking through volumes

of an encyclopedia, just to look up a simple piece of information that would’ve taken you

less than a minute to google. And it’s not just out laptops and PCs that are computers,

everything modern, from our cars to our TVs and the ever-expanding internet of things,

have some sort of processing computer that allow it to function properly.

Despite the omnipresence of computers in modern society most people live in ignorance

regarding how they actually work. When asked the question of “how do computer work?”

the majority of people would simply answer with an “I dunno”. However, the truth is quite

complicated, as there are billions of processes happening every instant making your

computer display this very guide that you are reading.

In this guide I will hopefully clear up some of the mystery surrounding computers. And even

though by the end of it you’ll still be equally baffled as to how modern computers work, you

will know the basic concepts behind computer science, and will grow a sense of respect

towards the hundreds of engineers that made this marvel of modern technology possible.

Along with teaching you computer science, this guide will also show you how to build a

computer from scratch. But don’t get your hopes up, because while we will be building a

computer in this project, don’t expect the final product to be able to run Microsoft Word

or your favorite game. No, this computer that we will be building can only perform very

basic computational tasks like doing basic math, or displaying the Fibonacci numbers. These

tasks could easily be programmed nowadays with only a few lines of code.

So, in that case, what’s the point of this computer? Well, it is mainly a teaching tool used to

show how a computer performs all the various tasks. By building it, you learn what each

component in a computer does, how it works and interacts with the other components to

output some data. Then, if you hunger for more knowledge you can scale up and learn how

modern computers take the concepts taught in this guide, and inflate them to enormous

proportions.

Lastly, don’t be afraid of starting this project without any prior experience with electronics.

By following this guide anyone with two hands, determination and patience, can build this

8bit breadboard computer. Through the guide, you will learn about computer science, and

put the knowledge into practice by undertaking this project.

✦ ✦ ✦

The Very Basics

Transistors

As with all subjects, we must start from the beginning, or in the case of computer science

from the smallest scales. Transistors are to a computer what cells are to an organism; they

are microscopic devices that in unison to create a complex system. Nowadays transistors

are smaller than 50 nanometers, that’s smaller than the smallest thing visible using an optical

microscope. Modern processors have billions of transistors inside and even our simple

breadboard computer will have thousands of them (but we won’t be using them separately).

So, what are these little transistors? Without getting into the physics of

them, transistors are little switches that allow electricity to flow depending

on an electrical input. Instead of activating the switch by hand, the transistor

activates the switch with current. With the diagram on the right, if we have

current flowing into B, then the transistor allows a larger current to flow

from C to E. These transistors are essential for any computer as they can

be connected to make much more complex and useful circuits. Of these

circuits, logic gates are the most important.

Logic Gates

Logic gates are circuits that take one or two binary inputs and return an output depending

on what those two inputs are. This is called Boolean logic. These binary inputs are used

throughout the whole guide and they will be referred to under different names (on/off, 1/0,

HIGH/LOW) but they mean the same thing. The logic gates come in various flavors: AND,

OR, NOT, NAND, NOR, XOR; each of these giving out a different output based on the

combination of inputs. The output of the logic gate is dictated by series of transistors that

are arranged to return the wanted output. Here we’ll go over each type of resistor,

explaining what they do:

The AND Gate:

The AND gate takes two inputs and if they’re both turned on, it turns the output on as

well. Otherwise, the output would remain off. Here is the symbol for the AND gate:

For this gate the output ‘O’ only turns on if current

is flowing from both ‘A’ and ‘B’. This can be

expressed using the truth table on the, where a 1

represents current flowing and a 0 does not.

Input A Input B Output O

0 0 0

1 0 0

0 1 0

1 1 1

AND O

The OR Gate:

The OR gate takes two inputs and if one or both are turned on, the output turns on as well.

If both inputs are off, then the output remains off. Here is the symbol for an OR gate:

For this gate the output ‘O’ turns on if current is

flowing from either ‘A’, ‘B’ or both.

The NOT Gate:

The NOT gate usually called an inverter only takes one input. This gate simply inverts the

input, for example, if we have a 1 coming in, then we get a 0 as the output.

Here is the symbol for the NOT gate:

In computer science a line above an input or output means

the inverse or that it is activated when LOW. In this gate, if

our input is A the output is the inverse of A, so Ā.

The NOR and NAND Gates:

These two gates are less common as they are the combination of a AND or OR gate with

a NOT gate. Simply put, they return the opposite of their original gate. The symbols for

these two gates are the following:

In this logic table we see that the outputs are the

exact opposite as the ones for the AND gate. This

gate outputs a 1 for every case except when the two

inputs are on.

Input A Input B Output O

0 0 0

1 0 1

0 1 1

1 1 1

Input A Output Ā

0 1

1 0

Input A Input B Output Ō
0 0 1

0 1 1

1 0 1

1 1 0

OR O

NOT

NAND Ō

The same case occurs for the NOR gate which is the

opposite as the OR gate. In this case the output

turns on only when neither inputs are on.

The XOR Gate:

The XOR gate, or exclusive OR turns on when only a single output is on. What this implies

is that it outputs a 1 when one input or the other (but not both) are on. Here is the symbol

for the XOR gate:

We can see that the logic table for the XOR is

very similar to the OR gate’s with the only

difference being the last row where both inputs

are on, so the gate doesn’t turn on.

The Binary System

When we think of computers the images of 1s and 0s often come to mind. As we've seen

in the logic gate section the 1s and 0s are used to represent the state (on or off) of a

particular input or output. These 1s and 0s are also used to store any kind of computer data

whether it be images, video, audio or text, all of which is achieved using the various

computer components and a long sequence of 1s and 0s.

The binary system is a way of representing numbers using only two unique digits. This is

helpful to have as a computer can treat these digits as little 'switches', representing a 0 when

it's in one direction or a 1 when in the other direction. Computers use binary because the

'switches' can be easily controlled with current (using transistors).

So how does the binary system work? Binary is like any other system for representing

numbers. To you, who has lived his life in a decimal centered world, the binary system may

appear a little strange. To help us understand binary better, we often convert it to decimal,

but keep in mind that the computer doesn’t need to do that. Another advantage of using

binary is that math is easier with binary and can be done with a series of logic gates (see

ALU). As an example, let’s take the number 27 in decimal and convert it to binary.

Input A Input B Output Ō
0 0 1

0 1 0

1 0 0

1 1 0

Input A Input B Output O
0 0 0

0 1 1

1 0 1

1 1 0

NOR

Ō XOR

Decimal: Binary:

As we can see in both systems, the individual digits are multiplied by some number and then

added together. In decimal, these are the powers of ten while in binary these are the powers

of two. In both cases we get the same answer, the difference comes in what values those

numbers represent. The use of the numbers 1 and 0 can be confusing (10 in binary is 2 in

decimal) so when using binary, it is equally as correct to represent the digits using ○ and

●.

✦ ✦ ✦

27
2 x 101 = 20 + 7 x 100 =

7

11011
1x24 + 1x23 + 0x22 + 1x21 + 1x20 = 27

16 + 8 + 0 + 2 + 1 = 27

Component Overview

From transistors and logic gates we will now scale up to explain the different sections of

the computer; this is computer architecture. The design of a computer: what it can do and

its limitations, are all based on computer architecture and the specifications that are dictated

by the computer's components. Inside a computer there are many components, these are

the same basic ones that are found in the breadboard computer but they’re repeated

hundreds of times, are made orders of magnitude larger in terms of storage and memory

and smaller in terms of physical space.

To make the components do work they each have their own control lines. When these

lines are activated they let the component perform a certain action. For example, one of

the control lines would be to output data from one component, so it would only be able to

do so when the control line is activated. To run a program, the computer would activate

the control lines in series, performing the instructions given.

Of the basic components the first is the clock. This is the computer's metronome and at

each beat or tick of the clock an instruction is executed. Without this clock, there would

be no order and multiple instructions would be happening at the same time, messing up

data and the output of the program. However, this also means that the speed at which the

computer runs, is set by the frequency of the clock. This is known as the clock speed which

is usually expressed in gigahertz when talking about modern computers. Our computer's

clock speed will be extremely slow compared to modern processors, but this won't matter

because the programs that you write into this machine are very short (and if it's too fast

you won't be able to see the steps involved in the computing process).

RAM is where the program, and any other data used by the program, is stored. Any

computer program requires RAM to run with high end games and demanding applications

requiring more than 8 gigabytes. In contrast, this computer will only be able to hold 16 bytes

of memory (sixteen 8-digit binary numbers) but this could be expanded. This means that

only 16 total instructions, including extra values to be used in the program, can be inputted

into memory. While this is very little, it serves our purpose of seeing how computers work.

It is important to know a computer’s RAM is so that you can know what kind of programs

it will be able to run.

Another component within the breadboard computer is the arithmetic logic unit, or ALU.

In modern computers, these are incorporated within the processor. Here, is where all the

math in the computer is done. In the case of this computer it simply adds or subtracts two

binary numbers, but these operations can be repeated to perform multiplication and division

through some clever Boolean logic. The values used to add or subtract are retrieved from

the A and B registers in this computer.

Next, there are the registers. Again, modern computers have hundreds or even thousands

of registers found inside the processor. Here, temporary data is stored to be sent to

another component. For example, one of the registers will hold a value to then be sent to

the ALU which might then output this new value back into the same register. In our

computer there are five total registers; these are:

A register - this is the first of two registers connected to the ALU. Data from memory is

inputted in which can then later be added to the B register. The value from this register can

then be outputted to the display or sent to RAM.

B register - this is the second register to be connected to the ALU. It serves the same

function as the A register with the exception that the value stored in this register cannot

be outputted.

Instruction register - as the name implies, this register holds the binary value of the current

instruction. This value is then sent to the control logic to tell the rest of the components

what to do to run the instruction.

Memory address register (MAR) – this register works together with the RAM to fetch the

data stored in a certain location. In the breadboard register, the MAR holds 4bits of data

which tell RAM what byte of data to retrieve. The more memory you have, the longer the

addresses will need to be to accommodate said memory. The programs that will be inputted

will be done so through the MAR and the RAM directly.

Output register – lastly, we have the output register. This register simply stores a value to

then be outputted to the display. Since this register can only hold 8 bits of data in this

computer, the computer can only output numbers up to 255 (eight 1s in binary).

The Program Counter is used to keep track of what instruction needs to be executed next.

Since we have a maximum of 16 instructions due to the limitations in RAM our program

counter counts in binary from 0000 to 1111. However, values can also be inputted into the

program counter to skip forwards or backwards in the program to create loops.

The bus is the computer’s highway as it transports data from one component to another. If

we wanted to output a value from the ALU to then be stored in a register, the bus would

be needed to transport the data. Instead of passing the data directly from one component

to the other, it goes through the bus and then the second component picks it up and stores

it. Having a bus is useful as it connects all the components together and allows all of them

to access each other’s data.

Finally, there is the control logic. This component takes the instruction given by the

instruction register, and then tells the rest of the components what control lines to activate

to complete that instruction. For example, if we needed to load a value from RAM into the

A register the instruction decoder might say, “RAM, output data at address 0010 and put it

onto the bus. A register, take the data from the bus and store it.” Obviously, this wouldn’t

be done with words but instead through combinational logic, which takes all the possible

inputs and gives the appropriate outputs.

Here is a basic diagram outlining how data is moved around the components.

✦ ✦ ✦

Making the Computer

In the next few sections the guide will go one by one through every component in the

computer and explain how it works and how to build your own. This type of computer is

known as a ‘breadboard’ computer as it is built on breadboards. A breadboard is base in

which you can connect various electronic circuits. They’re most commonly used for

prototyping and testing circuits out before soldering them. Breadboards are very useful

since the only thing you need to build a circuit is the breadboard and the material for the

circuit itself; no other tools or knowledge is needed. They’re extremely safe, so no safety

precautions are necessary except for the obvious “No water near electrical circuits”.

However, there is a downside to these devices. While their safe and easy to use, the

connections between wires can be finnicky, and for a large-scale project like this, it is

essential to go over every connection carefully. Also, when hooking up all the wires, you

often make a mistake and connect wires to their incorrect destinations. Most times nothing

will happen, but if you mess up particularly badly a chip might heat up a lot or an LED could

burn out.

The connections in the breadboard work

as shown in the diagram. Sections A and

D run horizontally, with every pin of each

row making a connection. These rows are

usually reserved for power and ground.

Then, there is sections B and C running

vertically. Notice that the columns are

split in two, so no connections is made

between the two sections. Here, the main

circuit is built, where most devices are

hooked up.

One last thing before getting on with the guide, is that when building the various

components, many different chips are used. Some of the simpler chips won’t be explained

in detail, so to know what each pin does it is recommended that you look up the data sheet

online.

✦ ✦ ✦

 The Clock

As was mentioned previously, the computer’s clock keeps all the components in order,

managing each instruction one by one. Without a clock, then the computer would get all

sorts of errors: data would overlap on the bus or multiple instructions would be ran at the

same time. Furthermore, since the clock ensures that all instructions happen step by step,

then the speed at which the clock runs sets the pace for the rest of the computer.

For this computer we want the clock speed to be variable. Sometimes we would want to

see what’s going on, while other times we may just want to get the program’s output, so,

the clock speed should be able to change based on what the user wants. However, to truly

see step by step what each component does then it would be best to just control the clock

speed ourselves with the push of a button. In that case, the computer will have two clocks:

an automatic one and a manual one.

The Automatic Clock

The way this clock works is by alternating the output voltage from high(on) to low(off)

doing so in equal periods of time. If we were to graph this change in voltage we would see

a series of square waves where the peak and trough of the wave is equal. As the voltage

alternates from 0 volts to the clocks output voltage we get the following waves:

To generate these series of waves, the computer will take advantage of a chip which makes

them automatically: the 555 timer. So, how does this timer take a continuous input voltage

and turn it into a series of square waves? Here is a diagram of the circuit that the computer

will use:

0V

3 - 5V

1

2

The first thing that happens once the chip is hooked up properly is, a low voltage that is less

than a third of the supply (so in this case 1.67V) is applied for an instant causing the output

pin to go high beginning the cycle. Inside the chip, there is an SR latch; this device simply

holds the output which is HIGH due to the voltage applied previously.

Then, voltage (blue arrow 1) starts charging the capacitor C1 until it goes over the timer’s

threshold (pin 6) which is two thirds of the supply voltage: 3.33V. Once this happens the SR

latch turns the output LOW and holds it. Apart from the regular output, inside the chip

there is also an inverted output which goes HIGH at this point. This inverted output is

connected to a discharge (pin 7) which discharges the capacitor C1 until it goes below

1.67V. Here we see the flow of electricity change as now it flows from the capacitor to the

discharge (blue arrow 2). Once the capacitor discharges below 1.67V the capacitor is again

charged up and the process is repeated, creating square waves as the output switches from

HIGH to LOW.

Note that the output voltage isn’t 5V volts because 555 timer limits it to 1.7V less than the

input. Also, pin 4 is a reset pin that is activated when it is LOW, so it is set HIGH in the

diagram.

The frequency between the changes in high to low is based on three factors, these are C1,

R1 and R2. By varying C1’s capacitance, it changes the amount of time that it takes it to

charge up. The two resistors also limit the current passing which also slows down the rate

at which C1 charges. Moreover, if you look at the diagram you can also see that when C1

discharges it must pass through R2 again, further increasing the time at which the capacitor

discharges.

For our computer we want to be able to change the speed at which it runs, this means that

we must have a way to change the clock’s frequency. As we now know, by changing the

R2’s resistance we’ll also see a change in the clock’s frequency. Using a potentiometer which

varies the resistance we can control the time which it takes for C1 to charge and discharge.

Here is the previous diagram modified to show this addition:

0-1MΩ

1kΩ

1kΩ

2µF

5V

The Manual Clock

Next, the computer should also have a manual clock where you would step an instruction

forward by pushing a button. This is much less complicated than the astable timer because

it really is just connecting a button. The button works by letting electricity through when it

is pushed down. If we were to connect the button to the clock’s output, then the

components would advance when the button is pressed.

Now we have two separate outputs for the clock, when we should only have one.

Therefore, to switch between the two types of clock (automatic and manual) a two-state

switch is used. This switch takes two inputs and based on its position it connects one of the

inputs to the output.

Lastly, the clock needs a way to halt a program and stop the computer from running. To do

this, the computer uses an AND gate through the 74LS08 chip. If the clock is on and the

halt line is also on then the gate will let the output pass. Otherwise, if the halt line is brought

LOW, then the AND gate won't let the clock’s signal through and thus the clock will be

stopped.

There is a minor problem when using the 74LS08, which is that when one of the gate’s

inputs isn’t connected to either ground or power (so when the button is open), the AND

gate would default to HIGH instead of the desired LOW. To fix this issue a pull-down

resistor (10kΩ) is used with the button to allow electricity to flow when it is closed, and to

connect to ground when it is open.

Variable

Resistor
It is also recommended

that if pin 8 is not

used, to connect it to

ground via a 100nF

capacitor..

It is recommended

that if pin 4 is not

used, to connect it

to 5V.

When halt line is

connected to ground,

it clock stops.

LED is used to show

the clock ticks clearly.

Resistor next to LED

is optional as the

74LS08 chip controls

current.

The Register

In any computer there are many registers, this one the five basic registers: the A and B

registers to access the ALU; the instruction register to store the current instructions; the

output register to hold values to be displayed; and the memory address register to access

memory from RAM.

This component acts as fast memory that can be used to store values to be sent off to other

parts of the CPU; in essence, registers are temporary data storages. In this computer, the

largest register will only hold 8 bits (or a byte) of data, as this what most other components

use. To be able to store a bit of data we need a device that can hold a value that is inputted

when the clock ticks, and keep it there until another value replaces it. However, we also

need a way to control when a value can be inputted, this is done through a control line.

This so-far hypothetical device is called a D flip-flop.

The D flip-flop

D flip-flops hold a value (1 or 0) that is inputted through a data line when a different enable

line is also activated. This little device also only allows data stored to be changed on the

rising edge of the clock (so as it goes from low to high). This means that is the data line is

changed in between clock cycles, the stored value won’t change until the clock goes HIGH.

Here is a graph showing how the flip-flop’s stored value (Q) changes with the clock (CK)

and input (D):

The clock oscillates

between high and low.

D is the input going into

the flip-flop.

Q is set to the same as D

at every rise (marked with

the blue lines)

Lastly, �̅� is always the

opposite of Q

A D flip-flop isn’t a full register though, because it at every clock pulse the data line would

be set to whatever the data input is. So, an input enable line is needed that controls whether

the value coming in should get loaded onto the flip flop. By creating a circuit with a D flip-

flop and various logic gates we can create a register that updates its output on the rising

edge of the clock, and only when the load enable line is on.

To show how this circuit works let’s say that the enable line goes LOW: The bottom AND

gate would output a 0 no matter what the input is as it’s connected to the load. The top

AND gate would also output whatever the previous output (Q) is. Thus, the OR gate would

output whatever the top AND gate’s result is because the bottom input is 0. Overall, there

is no change to Q as that bit of data just gets cycled through.

If the enable line is a 1: The top AND gate would output a 0 no matter what Q is due to

the not gate in front changing the 1 to a 0. Then the bottom AND gate returns whatever

the input is. Next the OR gate outputs what its bottom input is, meaning that the input y

has been transferred into Q.

This is the process that a 1 bit register goes through to output the correct value by setting

its output the same as the data input when the load line is on. This 1 bit register is not very

useful as most of our components deal with 8 bits at a time. To create an 8bit register we

just link up these modules with the same load enable line and clock, creating 8 registers

each with their own input and output.

To build an 8bit register, the computer will use the 74LS173 chip. This chip is simply a 4bit

register so we’ll have to use two of these in tandem. So here is how the chip works:

Pins 1 – 2. The output controls. We want to always have an output so that we can see

what’s inside the register at all times. Since these pins are inverted they should be connected

to ground to be switched on.

Pins 3-6. The 4 data inputs. These will be connected to the bus and will be receiving data

from it.

Pin 7. The clock input pin. This one will be hooked up to the clock’s output to run the D

flip-flops inside the chip.

Pins 9 – 10. The load enable pins. These pins allow the data to be written onto the chip.

They will be connected together to a separate load line which will be used when setting up

the computer’s control logic. Since these pins are also inverted when this load line is low

data can be written into the registers.

Pins 11-14. The output pins. They will output data from the registers into the bus through

the 74LS245 chip.

Pin 15. The clear pin. This pin erases all data stored in the pin. For now it will be connected

to ground so that it doesn’t clear the data when using the register, however, the computer

will have a reset button which will be connected to this clear pin.

Lastly, to complete this circuit, one last chip is needed. As is mentioned above, the output

enable lines will always be on to see the data inside the chip. This means that data will always

be going onto the bus which could end up messing up the program. To prevent this from

happening the 74LS245 (read the data sheet to what the pins do) is used, which only allows

data to flow in one direction when an enable line is activated; this will be the registers’

output enable control lines. So when this chip is not enabled, data from the registers won’t

go out to the bus.

The data lines will be

connected to the bus.

The clear line will be

connected to a master

reset.

Be careful when wiring.

Some of the leads overlap

or are hidden underneath.

Connect this to the

clock’s output.

74LS173 74LS173 74LS245

In the computer architecture overview section of this guide, I explained that there are 5

different registers. At this early stage, we can construct 4 of these 5 registers: The A

register, the B register, the Instruction register and the output register. Both the A and B

registers are identical to the one explained above. For now, they connect to the bus and

input and output data from and to there.

However, the instruction register is slightly different, if we refer back to the original

computer architecture diagram we can see that only 4 bits are output to the bus. The other

four are being sent to the control logic module. This means that this register will have a

slight difference, instead of connecting all 8 outputs to the bus we only connect the least

significant (or right most) bits. The other 4 bits will later be used when constructing the

computer’s control logic.

Lastly, we have the output register. This register only takes inputs as it doesn’t need to

output any data back to the other components. Instead, this register is used to store the

data that the user interacts with (e.g. the answer to a calculation). If the program inputted

was to be the sum of two numbers, then the answer would be stored at this register and

then shown in the display for the user.

These outputs will

later be connected

to the control logic.

In this register data lines 1-4 don’t act

as outputs, therefore the output

enable only enables lines 5-8.

74LS245 74LS173 74LS173

`This computer’s display sadly isn’t very user friendly; there is no monitor or LCD display.

To keep this project as simple yet as informative as possible, the computer will use 8 LEDs

to represent an 8bit binary number. The display can be changed if you want to or even

connected to a microcontroller to convert the outputs into a decimal number

✦ ✦ ✦

The “display”. Each LED

is labelled to show their

value.

Output enables are tied to ground so

that it always outputs to the LEDs.

74LS173 74LS173

Data In lines are connected

directly to the bus. Since

this register doesn’t output

back, no 74LS245 chip is

needed.

The ALU

The ALU (Arithmetic Logic Unit) is the component in a computer that does all the math.

Mostly, this component simply adds or subtracts two numbers, but these operations can be

repeated to do more complex arithmetic. In modern computers, most ALUs are integrated

within the processor and are capable of doing complex operations through clever programs.

For this component, we will use chips called adders which take two values and returns their

sum. These two values will be coming in from directly from the A and B registers.

Technically, the ALU will be adding the values in the registers all the time, but we won’t be

using the added value unless we want to. However, we can also set these chips to subtract

two numbers through some clever use of binary logic. Therefore, we need our ALU to have

a control signal that changes its mode from addition to subtraction. Lastly, we need another

signal that enables the ALU’s output as we also don’t want to have it output data onto the

bus all the time. With these parameters set, this is the basic design of the ALU:

Binary Arithmetic

Before building the ALU we should know how it works. As is mentioned above, the ALU

makes use of chips called adders, so how does an adder take two 8bit values and add them

together. The answer is of course through logic gates. First, let’s start simple, how do you

add two separate binary digits?

Well, it’s quite simple: 0 + 0 = 0 These are all the operations with two 1-digit binary numbers

 0 + 1 = 1

 1 + 0 = 1

 1 + 1 = 0 Here the 1 is carried over to the next digit

With this let’s add two more complicated numbers:

 11110 (30 in decimal) Here we see the same operations as above, just

+10101 (21 in decimal) repeated and using the numbers that are carried over

110011 (51 in decimal)

To figure out how to construct a circuit with logic gates that adds up two 1 digit binary

numbers, it helps to see all the possible combinations of two bits that can be added:

Ci A B Sum
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

The above diagram shows the logic circuit of a full bit adder where: A and B are the two

inputs; Ci is the carry coming in; S is the sum of the two inputs and is shown in the table as

the first (right) digit of the sum. Co is the carry coming out and is shown in the table as the

second (left) digit of the sum. Here’s how this circuit works:

First, we need to look at this as two separate operations, one to find the sum digit and the

other to find the carry out digit. For the first 4 cases, Ci is a 0, we can see that the sum digit

here is the same as the XOR gate’s logic table (the top-left XOR gate). Meanwhile, the

output carry digit follows the same logic as an AND gate (the bottom most AND gate) so

we connect one to the inputs.

The next 4 cases have the carry digit as a 1. Here, the sum digit is simply the inverse of the

previous four digits. With XOR logic, if one input is a 1 then the other will end up being

inverted as the output, otherwise the second input remains unchanged. So in this case, if

the carry in is a 1, then whatever comes out of the first XOR gate will be inverted in the

second XOR gate, giving us our desired results. The output for the carry digit gets a little

more complicated. In our table we see that when A and B are the same, the carry digit is

also the same; this is the same as in an AND gate, so we can use the one that was used for

the sum digit. However, when A and B are not equal the carry digit is always 1; this logic

1 1
1

1

1

 1

0

0

0

0

1

 1

1

 0

1

 1

1

 1

1

0

1

 0

1

can be interpreted with first XOR gate used. We also need a second AND gate because we

only want this output when the carry is a 1 as well. This is shown in the circuit diagram

above with an example where the numbers in red is the data inputted processed to give the

correct answer.

This diagram above shows a 1bit adder because our inputs are both just one bit. In our

computer, we use 8bit values, so we need an 8bit adder. An 8bit adder can be created by

linking up multiple of these 1bit adders, connecting the Co output to the next adder’s Ci

input like so:

Getting the ALU to Subtract

The 8bit adder isn’t the complete ALU that we want as it also needs to be able to subtract

two numbers. In math, subtraction is the same as addition with one of the numbers being

negative, therefore we don’t need a new circuit dedicated for subtraction. What we do

need however, is a way of expressing negative numbers. The way that most computers do

this is by taking the two’s complement of a binary number.

The two’s complement of a number is it’s inverse plus 1. For example: 0101 becomes

1010+1=1011. In two’s complement the most significant bit acts as the sign bit meaning if

it’s a 1 then the number is negative and when it’s a 0 the number is positive. The reason

computers use this method for representing negative numbers is because it’s the simplest

method that works with the arithmetic explained above.

To better show how this works, let’s say we wanted to subtract 11 from 25, in decimal this

would be 25 +(-11) = 14. Now if we were to do this is binary it would be 011001 + the

two’s complement of 01011 where the first digit is the signed bit. To do this calculation we

first need to convert 11 into its two’s complement, so 01011 becomes 10100+1=10101.

. . .

Then we do the normal binary addition so to give us 11001 + 10101 = 101110. If we get rid

of the last carry bit, we end up with 01110 which is 14 in binary.

Building the ALU

For the ALU, the computer will not use separate AND, XOR and OR gate, instead it will

use the 74LS283 chip which holds a 4bit adder. Two of these chips will be linked to get the

full 8bit adder.

Pins 2,3,5,6,11,12,14,15. The input pins. As you can see on the schematic they come in pairs

as they each add up to their respective output pins (e.g. A1 + B1 = S1). These pairs of pins

will be connected to the values coming in from the A and B registers.

Pins 1,4,10,13. The output pins. They are the sums of the input pins. For example, pins 5

and 6 are the inputs that add up to the output at pin 4. The output pins will be connected

to the bus through a 74LS245 chip which was also used to buffer the register’s outputs.

Pin 7. The carry input. Here is where the carry from the first chip will enter into the second

chip. This pin will also be used when subtracting two numbers because since we need the

two’s complement, the ALU would add 1 to the beginning of every subtraction through the

carry in.

Finally, there is pin 9 which is the carry out pin. This pin is only used to transfer the carry

bit onto the second adder chip.

Using this chip, a basic diagram of the ALU can be drawn. In this diagram, the XOR gates

are used to convert the B register’s outputs into two’s complements when the subtraction

control signal is on. To show why XOR gates are used we need to look at the gate’s logic

table:

Say input A was the subtraction control signal and

input B was data coming from the B register. If input

A was off, then the output would remain the same

as input B. However, is input A was on then the

output would be the inverse of input B. So, the XOR

gate gives us the inverse of the data coming from the B register only when the subtraction

signal is on since it´s hooked up to all the gates. Otherwise, the B register data remains

unchanged.

This subtraction signal is also connected to the first adder’s carry input. This is done to add

1 to the value only when this signal is on, giving us the two’s complement; an inverted

number + 1 from the carry in. The XOR gates that will be used in this module can be found

in the 74LS86. This chip includes 4 XOR gates, so 2 chips will be needed in total. One last

thing to note is the 74LS245. This chip buffers the ALUs outputs, giving the computer

control over when the ALU can output data.

Input A Input B Output O
0 0 0

0 1 1

1 0 1

1 1 0

With the ALU built, the A and B registers can now be connected to each of the ALU’s sets

of inputs.

j v

Zoom in to see the

diagram more clearly.

Data Out connects to

the bus. It is enabled

with the control line.
Be careful when connecting

the adder’s outputs to the

74LS245 so that the leads

don’t get mixed up.

The data inputs are

labelled 1-8 for their

respective register. Here,

1 is the least significant bit.

The second inputs for

the XOR gates, and the

Carry In for the first

adder are connected

together.

7
4
L
S2

4
5

7
4
L
S
2
8
3

7
4
L
S
2
8
3

7
4
L
S
8
6

7
4
L
S
8
6

LEDs can be connected

at the outputs to show

the value stored in the

ALU

The RAM Module

A computer’s Random-Access Memory is where all the data that is to be used in the

execution of a program (including the program itself) is stored. Furthermore, while the

program is running, new values can be saved into RAM to be used in operations later on in

the program. While most computers nowadays have gigabytes of RAM, this one will only

have 16 bytes in total. In modern computers, having more RAM allows your computer to

run demanding programs more efficiently.

RAM works by storing bits of data in long arrays, each row being multiple bits long, which

in the case of this computer they will be 8bit binary numbers. RAM access each line of

memory by having input and output enable lines connected to each row instead of

connecting them to each individual bit. This means that a computer can read or write data

one row at a time.

For the breadboard computer, there are 16 rows of memory, each holding 8 bits, or a byte

of data. Each set of 8 bits is called a word and they have an enable and write control line.

This means that each word of RAM is like its own register, however, the main difference is

that they’re accessed differently. Every word in RAM has its own address, a 4bit number (4

bits because there are 16 bytes of RAM) through which the enable and write lines are

accessed. The RAM module will have a series of inputs which tells itself to look in a particular

address and retrieve information from it, these are the address lines.

To take a 4bit number and enable its corresponding memory address, an address decoder

is needed. The following diagram shows the basic principle of the address decoder:

On the left, there are the 4 address lines, these are turned into two signals, the original and

the inverse. On the right, there is a series of AND gates with multiple inputs. These AND

gates allow the enable signal of an address to turn on if all its inputs are on. These inputs

are the same as the address, just interpreted as inputs to electrical signals. For example, if

we wanted to access the data at address 1100 first, the address lines would be set to 1100.

This would cause A0, A1, A2̅̅̅̅ and A3̅̅̅̅ to go high. Only one out of all the AND gates would

turn on, the one at address 1100 since those are its AND gate’s parameters. On this diagram

there is a fifth input into the AND gates, this would be a master enable line for all the

memory addresses and would be kept high at all times. Lastly, this diagram only shows 4

addresses but of course, the full RAM module would have an address decoder for all 16

words of data.

Instead of constructing a RAM module out of individual parts, it’s easier and more efficient

to simply use an existing chip that contains the storage and address decoder. This way space

is reduced, and mistakes are minimized, plus who wants to build 8 separate registers each

connected to four and gates. So to do this, the chip that will be used is the 74LS189.

The 74LS189

This chip is holds 64bits of RAM, which you may have noticed is not enough for 16 bytes of

data. This means that we’ll simply have to use two of these chips, both accessed through

the same address lines.

Pins 1, 13-15. The address line pins. On the diagram above A0 is the least significant bit

while A3 is the most significant bit. This is where the address to access each word of

memory is inputted through. This will later be connected to the Memory Address Register

which will keep track of where to get the data from RAM.

Pins 4, 6, 10, 12. The data input pins. From these 4 bits of data are inputted to be stored in

RAM. Data will be able to be inputted before and while the program is running. A series of

DIP switches will be connected to these pins to program data beforehand. While the

program is running, the inputs will come from the bus.

Pins 5, 7, 9, 11. The output pins. These pins from both chips used will be connected to the

bus. These pins output the inverse of the data stored, as seen on the diagram with the line

over the output. To invert it back to normal, NOT gates (or inverters) will be placed after

these pins before the signals go on the bus.

Pin 2. The chip select. This pin acts line an output enable, which allows the data at the

selected address to be outputted. Like in the previous modules, we want this to be on at all

times, so we can see what’s stored in memory. This pin activates when it is low, so it will

be connected to ground. Since this chip is always outputting data, we need a way to control

when it goes out to the bus. For this, the 74LS245 buffer is used.

Pin 3. The write enable. This pin allows data to be written into the address selected of

memory. This pin will only be on when inputting data and will therefore act as a control

signal for RAM’s output enable. Like the previous pin, this one also activates when low.

Write Enable line will be

connected to another

circuit afterwards

D1-8 are the data

inputs where 1 is the

most significant bits.

They will be connected

to another circuit

The 74LS245’s outputs

will also be connected

to another circuit

A1-4 are the address

lines. They will be

connected to the MAR

7
4
L
S
1
8
9

7
4
L
S
1
8
9

7
4
L
S
0
4

7
4
L
S
0
4

7
4
L
S2

4
5

When using the 74LS189 chip we need to keep in mind that all the outputs are inverted

within the chip. This means that we need to reinvert them back to their normal values using

an inverter. To invert the output signals, we need to connect the outputs of the RAM chips

to the inputs of the 74LS04 chips†; keep in mind that we are using 2 of both types of chip.

With the now proper output signals, we need to connect them to the bus. But again, like in

the previous modules we need to make sure that data being output from multiple modules

doesn’t end up getting mixed up. For that, we use the octal bus transceiver which controls

our outputs so that they’re only one when we need them to be (link to appendix).

Therefore, we connect the outputs from the 74LS04 chips to the inputs of 74LS245 chips.

This chip will also hold our output enable line, as pin 19 of the 74LS245 acts as the enable.

Next, we need both chips to be set to the same address when accessing data, so we tie the

address line pins of the two chips together. We also want the two chips to write data at

the same time, so pins 3 from both chips will be connected together and then to a separate

control line that will only be on when writing the programs. Lastly, the data inputs for the

RAM chips will be directly connected to the input switches.

† If you want to skip this step you can use the 74LS219 chip which doesn’t invert its outputs,

however these chips are much more difficult to find.

The Memory Address Register

Together with the actual RAM, the computer needs a memory address register so that RAM

know which address to output data. This computer accesses RAM at two separate times,

before and during the execution of the program. When writing the program beforehand,

we want to manually control which address the data that we’re inputting is going into.

However, during the execution of a program we want to read or write data from an address

automatically. This means we need two ways of accessing data from the MAR: one through

user inputs and the other from the bus. The user input will be done through 4bit dip

switches while the address coming from the bus will be stored in a 4bit register.

To switch between two different inputs, we need a data selector. What this does is it takes

two different inputs and based on a control line it will output one of the two inputs. This is

done with the following series of logic gates:

A B S O

0 0 1 0

0 1 1 0

1 0 1 1

1 1 1 1

0 0 0 0

0 1 0 1

1 0 0 0

1 1 0 1

These logic gates output whatever input A is if the select (S) line is a 1. On the other hand,

if the S is a 0 then this circuit outputs whatever input B is. The truth table on the right

shows this. The way this works is that when S is a 1 then whatever is going into B’s and gate

will be a 0, therefore, the OR gate’s output will equal A. The reverse is true when S is 0;

A’s AND gate outputs a 0, meaning that the final output must equal whatever B is.

The computer will utilize the 74LS157 chips which holds four of these data selectors, one

for each bit in the memory address. With this chip each bit of the dip switches will be

connected to their respective A input on the 74LS157, while the outputs of the 4bit register

will be connected to their corresponding B inputs on the 2-to-1-line selector chip.

Since the MAR uses a 4 bit register we need to use the 74LS173 chip. We previously used

these chips when building the A, B and instruction registers. For this module the chip will

be used in much the same way: The out enable pins will always be turned on (ground), the

input pins will be connected to the bus, the clock pin will be connected to the clock signal,

the load enable pins to a separate control signal and the clear will be off (ground). The only

difference, is that this time the outputs will be connected to the selector chip (74LS157).

To connect the dip switches to the 74LS157 chip, we connect one side of the switches to

ground and the other side to the A inputs of the chip. The reason as to why we connect

one side of the switches to ground is because when there is no input into the selector chip,

it defaults to a 1. So therefore, if the switch is off, then the 74LS157’s input will be a 1 and

if the switch is on then the input will be a 0 as it’s connected to ground.

Now, to actually change between the dip switches and the 4bit register we use a double

throw switch where the first pin of the switch is connected to pin 1 of the 74LS157 to select

between the inputs. And the second pin is connected to ground. If the switch is on (away

from the switches first pin) then the selector chip will output its B inputs and vice versa.

To finish the memory address, register the only thing we have left to do is to connect the

74LS157’s outputs to the RAM’s address lines.

`

Data In lines go

to the least

significant bits

on the bus

Data Out lines

go to the RAM

chips’ address

pins

The computer

is in program

mode when

the right LED

is on

74LS173

74LS157

The Mode

Select line will

be used in the

next circuit

Back to RAM

The RAM chip will also be written with information from two locations: user input and the

bus. Like for the MAR we will also need to use the 74LS157 chip two change between the

two inputs. Since RAM uses 8bit words of data, we will need to use two of these chips in

tandem.

Connecting these chips is quite similar as with MAR: the output pins of the 74LS157 go to

the data pins of RAM. We also use dip switches for the user input and these are connected

in the same way, one side to ground the other to the A inputs. Lastly, we have the B inputs,

these are connected to bus. Like in previous registers we will take the data from the bus

using the same breadboard rows as the octal transceiver to reduce the space used.

Next, we need a way to toggle between the two to write into memory. Once again, the

74LS157 allows us to select when the write enable is on or off based on either the user

input or the bus input. This time we only need one of the four selectors where the output

goes into RAM’s write enable line. First, when writing data manually what we will need to

do is set the memory address using the MAR dip switches, then the actual data using the

RAM dip switches and then use a touch button that writes the data in. In our 74LS157, the

A input will come from this button where one side of the button is connected to ground

and the other to the input.

Getting the B input for this selector is slightly more complicated. When writing data into

memory from the bus we will have to use a control signal since we can’t manually do it

while the program is running. However, we don’t want data to be written at the same time

as the control signal goes high. Instead, we need data to be written on the upcoming clock

pulse So what we do, is take the combination of the clock signal and RAM’s write enable

signal using a NAND gate. We use a NAND gate because the write enable pin on the RAM

chips is inverted, this isn’t an issue with the manual input because we connect the button to

ground.

Inside the 74LS00 there are four NAND gates from which we’ll only use one. The first input

of the gate is from the control signal, the second input comes directly from the clock and

the output goes into input B of the last 74LS157 chip that we’ve used.

Lastly, the select pins for the three 74LS157s that we’ve used now are also connected to

the same double throw switch used in the MAR.

Mode Select line

comes from the

previous MAR circuit

This line goes to the

Write Enable pin on

the RAM chips

The Output lines go

to the RAM chips’

data inputs
The Input lines come

from the BUS. To save

space, connect them to

the 74LS245’s outputs

from the first circuit in

this module.

7
4
L
S
1
5
7

7
4
L
S
1
5
7

7
4
L
S
1
5
7

7
4
L
S0

0

The Program Counter

As we saw with the previous section, instructions are stored in RAM within separate

addresses. When running a program, we want the computer to execute the program

instructions in an orderly manner; first instruction 0, then 1, then 2 and so on. This is the

program counter’s job, to keep track of which instruction comes next in the program.

However, we don’t want to always be running instructions in a consecutive order.

Sometimes we may want to jump backwards once it reaches a certain instruction to create

a loop. Therefore, the program counter apart from just counting in binary, should also have

an 4bit input which would be transferred to the MAR to access a previous instruction from

RAM.

The Binary Counter

As is evident in the name, the program counter needs to be able to count numbers one by

one. This program counter will only need to count from 0-15 in binary; this range is the

same as the number of addresses in RAM.

The way the binary counter works is with a series of JK flip flops hooked up to each other.

JK flip-flops are little logic gate circuits with two inputs. One property that JK flip-flops have

is that if both inputs are HIGH, then the output will switch on and off at every clock pulse,

another way of saying this is the output being HIGH every other clock pulse. If we were to

then connect this output to the clock of a second JK flip-flop while keeping both inputs

HIGH so that it toggles the output, then the output of the second flip flop would change

once every 2 clock pulses. If we do this two more times we can see how a 4bit binary

counter has been created.

Flip Flop 1 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0

Flip Flop 2 0 1 0 1 0 1 0 1 0 1 0 1

Flip Flop 1

Flip Flop 2

 Flip Flop 1

Flip Flop 3

Flip Flop 4

Flip Flop 3 0 0 1 1 0 0 1 1 0 0 1 1

Flip Flop 4 0 0 0 0 1 1 1 1 0 0 0 0

In the above diagram you can see that as the flip flops’ outputs cycle, they alternate with a

lesser frequency. As we go left to right in the diagram, and look at the edges of the square

waves, we see that the flip-flops are counting in binary, with HIGH being a 1 and LOW a 0.

In the table this is also shown. Note that flip flop #1 also changes between 1 and 0 but it

isn’t shown in the table for clarity.

The Program Counter’s Design

To have a functional program counter that meets the computer’s needs, three control

signals are needed. The first control signal is the program counter’s output line. This would

output which instruction number that is to be executed into the 4 least significant bits of

the bus. Next, to be able to input the instruction number that the program wants to jump

back to, a jump line is needed. This jump line would act as an input enable which would put

the 4 least significant bits from the bus to the program counter. Lastly, a count enable line

is required. This line prevents the program counter from counting up at every clock tick.

Each program instruction requires more than one clock tick, so we only want to increment

the program once every instruction cycle.

The 74LS161

The central chip to this module is the 74LS161, which is a binary counter with some extra

features that we will take advantage of to make the previously discussed control signals.

Pin 1. The reset pin. Self-explanatory, this pin resets whatever value is being stored in the

chip. It will be connected to power for the most part so that it isn’t activated, however, it

will eventually be connected to a master reset switch.

Pin 2. The clock pin. This pin is the input of the clock to make the counter run properly. It

will be connected to the clock’s output.

Pins 3-6. The input pins. These pins will enable the program counter to be able to jump to

a certain number. Whatever is being inputted at these pins gets stored into the program

counter which will then continue counting from that value. These pins will be connected to

bus’s least significant bits.

Pins 7-10. The count enable pins. For the count enable control signal we will use these two

pins to control when the counter should be incrementing in value. For our purposes, these

two pins will be hooked up together and then two a separate control line.

Pin 9. The load enable. This pin allows the data coming in from pins 3-6 to be stored into

the counter. From this pin we will connect the jump control line which will be connected

to ground when we want it enabled and vice versa.

Pins 11-14. The output pins. Since the chip doesn’t have any output enables and we need to

control when data is coming out of the bus, the outputs will have to go through the buffer

chip (74LS245).

Pin 15. This pin would be used to connect multiple counters in series. Since we won’t need

it, it will be connected to ground.

To build the circuit connect the 74LS161’s pins as described above. For the output pins the

74LS245 chip is needed. As mentioned in the beginning, refer to the chip’s data sheet to see

how the chips work. This 74LS245’s inputs will come from the binary counter and the

outputs will go to the bus. Pin 19 which is the output enable on the chip will also act as our

last control line: the counter’s output enable. If we were to output the counter’s content

to the bus then we would need pin 19 to be LOW (connected to ground); the opposite is

true if we don’t want the output enabled.

74LS04 74LS161

The Output Enable line

outputs the data stored

in the program counter.

The Counter Enable

line simply increments

the program counter.

The Input Enable line acts

as the jump signal, inputting

whatever is on the bus to

the program counter

The Data inputs and output

lines will be connected to

the bus’s least significant bits

The Bus

When building the previous modules, most of the inputs and outputs have been connected

to and from the bus. Through the bus, data from one module can be transferred to another.

This computer’s bus will transfer 8 bits of data at a time since that’s how many bits most of

our modules deal with. However, the bus should also allow for the possibility of only

transferring 4 bits of data as that’s what’s used in the program counter and memory address

register.

Building the bus is quite different to the other modules because no chips are

being used. In fact, this is probably the simplest module to build but is equally

important in the computer. Since this computer uses breadboards, the power

rails on the edges of them work well to transfer data up and down the

components. By laying four of these side by side, we end up with 8 rails which

transfer the 8 bits of data. Then, to extend the length of the bus to reach all

the components, we simply have two of these power rail bunches and connect

them together using some leads.

Next, all the data lines of the bus need to be connected to a pull-down resistor

so that they’re not left floating when only using 4 of the 8 bits. This can be

done by connecting 10kΩ resistors at the top of the bus lines to the adjacent

boards and then to ground. Furthermore, to visibly show what is currently on

the bus, a series of LEDs can also be connected. This could be done in multiple

ways:

1. Have the positive end of the LED connected to the bus and the negative end to a separate

power rail on top of the bus. From here, connect them to ground.

2. Using leads, connect the data lines to some free space in a nearby board. Here, hook up

some LEDs with the leads connected to the positive ends and the negative ends to ground.

3. Connect the positive ends of the LEDs to the data lines and then solder the negative

ends together. This would then be connected to ground. Keep in mind that this method

requires a soldering iron.

With the bus done, all that is left is to connect all the components to it. When doing this

make sure not to cross any of the inputs or outputs. The program counter and MAR should

be connected to the least significant bits (the right most) of the bus.

✦ ✦ ✦

The Control Logic

Lastly, there is the control logic: the brains of the computer. Here, all the modules are told

what to do and when to do it so that a program is run. In a computer, the control logic is

the module that enables the program inputted by the user, to run the way it’s supposed to.

By connecting the modules’ control lines to the control logic and then manipulating them

based on certain patterns of data, the computer takes series of 1s and 0s to run complex

programs.

An overview of the control signals:

For the computer to be able to perform these instructions, it must do so by setting the

various control signals on and off. In total, for all the modules in this computer there are 15

control signals. These are shown in the following diagram:

MI – Inputs the 4 least significant bits from bus to the MAR

RI – Inputs 8 bits from bus to RAM

RO – Outputs 8 bits from RAM to bus

II – Inputs 8 bits from bus to the instruction register

IO – Outputs the 4 least significant bits from the instruction register to bus

AI – Inputs 8 bits from bus to the A register

AO – Outputs 8 bits from the A register to bus

BI – Inputs 8 bits from bus to the A register

OI – Inputs 8 bits from bus to the output register

ΣO – Outputs 8 bits from the ALU to bus

SU – Sets the ALU to subtract the A and B registers

CE – Enables the program counter, essentially incrementing it

CO – Outputs the 4 least significant bits from the program counter to bus

J – Inputs the 4 least significant bits from bus the program counter, thus jumping to a

different instruction

It is better for this computer to have all the control signals close together so that they are

more easily accessed. Therefore, the computer will have a breadboard in which all the

signals can be accessed through and also visualized via LEDs. However, there is a slight issue:

some of the control signals are activated when they’re set to LOW. It is simpler for us to

deal with the control signals when they’re all activated when HIGH. This means that we will

have to run those control signals through an inverter so that they activate when HIGH.

When connecting the control signals to the breadboard, do so in this order so as to not

mix them up later on: MI|RI|RO|II|IO|AI|AO|BI|OI|ΣO|SU|CE|CO|J|HLT.

The signals that are highlighted need to be inverted.

The Instruction Set

Before building this module or even learning how it works, we first need to figure out what

are the instructions that the computer can perform and how will it do so using the other

modules’ control lines. The list of instructions is the following:

NOP (0000) – The “no operation” instruction. This instruction doesn’t do anything it simply

skips to the next instruction in the program. However, the computer still needs to go

through the process of fetching the instruction and advancing the program counter.

LDA (0001) – The “load A” instruction. This instruction takes a value from memory and

transfers it to the A register. This instruction also requires a 4 bit parameter which is the

address from which memory should be retrieved to then transfer it to the A register. If we

had an instruction in a program that said LDA 10, the number 10 wouldn’t be loaded into

register A, instead whichever value was stored in address 10 would be loaded to the

register.

ADD (0010) – The “add” instruction. This instruction takes the value stored in the A

register and adds another value stored in RAM. Therefore, this instruction also requires a

parameter, the address of the value that you’re adding. When using this instruction, the

computer should load the value in the wanted address to register B and then add the values

together. This added value is then outputted to the A register.

SUB (0011) – The “subtract” instruction. This instruction subtracts a value stored in RAM

from the value stored in the A register. This value in RAM is accessed through another 4

bit parameter which points to the address of the wanted value and is then sent to the B

register. The subtracted value is outputted from the ALU and into the A register.

STA (0100) – The “store A” instruction. This instruction stores a value from the A register

into an address in RAM. This address is also accessed through a 4 bit parameter in the

instruction.

LDI (0101) – The “load immediate” instruction. This instruction stores a 4 bit value into the

A register without accessing RAM. The instruction holds a 4 bit parameter which is then

directly transferred to the A register. Since this value is stored in the instruction itself it can

only be 4 bits long.

ADI (0110) – The “add immediate” instruction. Similarly to the previous instruction, this

instruction adds a value directly, without the need to access RAM. This works by sending a

4 bit value to the B register to then be added together. The sum of the two values is

outputted to the A register.

SBI (0111) – The “subtract immediate”. This instruction subtracts a 4 bit number from the

A register and outputs it back to that register. Again, this 4 bit value comes from the

instruction’s parameter which is then loaded into the B register.

JMP (1000) – The “jump” instruction. This instruction sets the program counter to a

different value which then causes the MAR to access the instruction set at the value which

was set. Basically, this instruction jumps backwards or forwards to another instruction in

RAM.

OUT (1110) – The “output” instruction. This instruction outputs a value. It takes the data

stored in the A register and transfers it to the output register.

HLT (1111) – The “halt” instruction. This instruction stops the program to continue

running. This is done by activating the halt line set into the clock module.

When programing code into the computer we would write the sequence of instructions

into memory. However, we can’t just write LDA 12 into memory, instead each instruction

has its own binary “code name”. You can see above that each instruction has its own 4 bit

number, 0001 would be interpreted as the LDA instruction, turning on the necessary

control signals to perform said instruction. The instructions’ parameters, like the address in

LDA, would be written after the “code name” to make a full 8bit binary number that can

be written into memory. Using the same example, LDA 12 would be written into RAM as

0001 1100. This binary number can now be inputted with the dip switches that were set up

in the RAM and MAR modules.

Microinstructions

Each instruction that the computer can perform, is done through microinstructions. These

microinstructions set the control signals on and off. So through a series of microinstructions,

the actual program instructions are performed.

Let’s take the load A instruction. To perform this instruction, first, we output the program

counter and input this value into the MAR; this tells the computer which instruction to

retrieve. Then we output the value in RAM stored at that address and input it into the

instruction register; this transfers the instruction to the instruction register so that it can

then be evaluated by the control logic. After that, we increment the program counter by

enabling it so that the next instruction can be fetched from the proper address. The next

step is to output the instruction register and input the MAR. Note that the instruction

register can only output 4 bits, these are the parameters that were mentioned when

explaining the instructions. In this case the 4 bits set the address from which to fetch the

data from RAM. Lastly, we output the value in RAM from the address that was set in the

previous step, and input it into the A register.

This series of steps can be expressed like so:

CO|MI Program Counter Out, MAR In

RO|II RAM Out, Instruction Register In

CE Program Counter Enable

IO|MI Instruction Register Out, MAR In

RO|AI RAM Out, A register In

The first three microinstructions are found in every instruction. They fetch the program

from memory and advance the program counter. The last two instructions are unique to

the LDA instruction. Now, we find out the unique microinstructions for the rest of the

program instructions.

NOP

No unique microinstructions.

ADD

IO|MI Instruction Register Out, MAR In

RO|BI RAM Out, B register In

ΣO|AI ALU Out, A register In

First, the memory address is set with the first microinstruction, then RAM is transferred to

the B register, and finally the ALU’s sum is outputted to the A register. There is no

microinstruction telling the computer to add the numbers as the ALU does that

automatically. What is needed however, is a microinstruction telling the ALU to output its

value to the A register (shown in the third microinstruction)

SUB

IO|MI Instruction Register Out, MAR In

RO|BI RAM Out, B register In

SU|ΣO|AI Subtract Enable, ALU Out, A register In

The process here is the same as above, the only difference is that we enable the “subtract”

control line. Note that the last microinstruction enables three control lines at the same

time. Since they don’t interfere with each other it causes no problems.

STA

IO|MI Instruction Register Out, MAR In

AO|RI A register Out, RAM in

Here we see the only instance of the RAM In control line being used in this set of

instructions. The first microinstruction sets the memory address to the one where data is

stored. The second microinstruction transfers the data over.

LDI

IO|AI Instruction Register Out, A register In

This instruction is very simple, the only thing required is the instructions parameter to be

transferred to the A register.

ADI

IO|BI Instruction Register Out, B register In

ΣO|AI ALU Out, A register In

This instruction combines the ADD and LDI instructions where it loads the instructions

parameter directly to the B register and then outputs the ALU’s sum to the A register.

 SBI

IO|BI Instruction Register Out, B register In

SU|ΣO|AI Subtract Enable, ALU Out, A register In,

Same as above with the exception of the subtract enable line.

JMP

IO|J Instruction Register Out, Jump Enable

Another simple instruction where this time the computer outputs the instruction’s

parameter to the program counter so that the next instruction is fetched from a different

memory address.

OUT

AO|OI A Register Out, Output Register In

This instruction transfers the value in the A register to then be sent out to the output

register where the user reads it.

HLT

HLT Halt Enable

The only thing this instruction does is enable the halt line, so the clock stops and the

program no longer runs.

The Microinstruction Counter

Like the program counter which keeps track of which instruction is being executed next,

the control logic needs a counter that makes the microinstructions run one-by-one. This is

where we use the 74LS161 chip which is the same binary counter that we used in the

program counter. The 74LS161 counts from 0-15, this allows the instruction to have up to

16 microinstructions within it. However, this computer’s instructions only need 6 at the

most, so only the first three of the chip’s outputs are used. When connecting this chip make

sure to set the Load pin (we won’t be loading values into the counter) and the Enable pins

to HIGH.

For the programs to run smoothly the computer should set up the control lines in between

clock cycles, this way the microinstruction will be set up before it’s run by the computer.

So it should enable the control lines and once the clock ticks the other modules should

activate to run the microinstruction. This can be done by inverting the clock using the

74LS04 chip and have the output go into the counter’s Clock pin.

(revise this paragraph) Instead of having the counter count in binary, it will be more useful

to have it count as a series of outputs, where one turns off, then the next one turns off and

so on. This can be done with a decoder chip which takes the binary numbers and turns off

one of its outputs. For example: 101 activates the 5th output. By connecting this decoder to

the binary counter, we get a series of outputs turning going LOW in series. The 74LS138

chip takes a 3bit binary number and turns on one of its 8 outputs.

Pins 1-3. The input pins. These pins are where the binary number is inputted. They are

connected to the binary counter’s first three outputs.

Pins 4-6. The enable pins. These pins enable various things on the chip. We want them to

be all activated so set pins 4 and 5 to ground and pin 6 to power.

Pins 7, 9-15. The output pins. These are the chip’s output after the binary number has been

decoded.

With this chip in place you’d be able to see how the outputs turn off (they’re inverted) one

at a time from Y0 to Y1. These are 8 counts in total, but our instructions only take 6

microinstructions to complete at maximum. So to make the computer faster we can get rid

of those last two steps by tying Y6 to the Clear pin on the binary counter chip. We can

further optimize this process by combining the last two microinstructions of the fetch cycle

like so:

Originally you had RO|II, CE but this can be shortened to be on the same

microinstruction to become RO|II|CE. This saves us an extra tick allowing us to connect

the counter’s Clear pin to Y5 (pin 10). Now instructions that would take 6 clock ticks,

would only take up 5, let’s call the clock ticks T0 – T4.

The first two clock ticks of every instruction do the same thing, the T0 gets the memory

address (CO|MI) and T1 inputs the data from RAM into the instruction register and

advances the program counter (RO|II|CE). Therefore, we can tie T0 of the instruction

cycle to always activate the CO and MI control signals. Similarly, we can also tie T1 to always

activate its respective control signals.

The computer counts the instruction steps through the decoder chip. So the first step

happens whenever T0 goes LOW since the output is inverted. This means that we now

need to invert the T0 and T1 signals using the same 74LS04 inverter chip that we used to

invert the clock signal. Then, the now inverted output can be directly hooked up to the

proper control signals so that whenever T0 or T1 go off, the microinstructions for the fetch

cycle are activated.

Combinational Logic Using Memory

With the microinstruction counter figured out, one issue still remains. How does the

computer know that at a specific step in the instruction cycle it needs to turn on a control

line based on the instruction given? For example, if we wanted to run the LDA instruction,

74LS161

74LS04 74LS128

The T0 and T1 outputs

will go to the appropriate

control lines

This circuit will then be

hooked up to two EEPROM

chips, explained in the next

sections

how would the computer process the instruction given to turn on the IO|MI control

signals at the third step.

One way of doing this, would be to use really complicated circuits with logic gates, where

all the possible combinations have to go through its own set of logic gates. This method

however, would take up a lot of space and has a lot of room for error when wiring the

circuit. Instead, this computer will achieve the same function through the use of memory.

In memory the computer would have stored all the outputs for every instruction, and you

would access this data by setting the memory addresses to a combination of the instruction’s

“code name” and the step that the computer is running. Here’s how this would work:

Say our instruction was to load address 12 from RAM to the A register  LDA 12. This is

programmed into RAM as 0001 1100. The control logic only cares about the first four bits

of the code as they tell the computer which instruction is needed.

The first microinstructions of the fetch cycle are automatically done above as they’re already

connected to the proper control lines, meaning that only the last three ticks are left. So in

memory we would need three addresses for each instruction, which would then activate

the proper control lines.

These addresses would be inputted as a combination of the instruction’s “code name” and

whether the computer is running T2, T3 or T4. The address for LDA at T2 would be:

0001 010

At this address, a 16bit value would be stored. Each bit of this value, except the last one,

represents one of the 15 control signals, therefore at the above address, a 1 would be

stored for the IO and MI bits. The order in which the control signals will be represented

as the bits, will be the same as the one laid out on the breadboard where all the control

lines are connected: MI|RI|RO|II|IO|AI|AO|BI|OI|ΣO|SU|CE|CO|J|HLT.

Thus, at T2 for instruction LDA, 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 would be stored at address

0001 010. The following table is used to better show the addresses and their corresponding

data since that long sequence of 1s and 0s doesn’t really mean anything to our human eyes.

Instruction

“code name”

T2 in binary (first two

ticks are discounted)

T
2

T
3

T
4

M
I

R
I

R
O

I
I

I
O

A
I

A
O

B
I

O
I

Σ
O

S
U

C
E

C
O

J H
L
T

X

 0 0 0 0

0 1 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

NOP 0 0 0 0

0 1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

 0 0 0 0

1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

 0 0 0 1

0 1 0

1 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 MI IO

LDA 0 0 0 1

0 1 1

0 0 1 0 0 1 0 0

0 0 0 0 0 0 0 0 RO AI

 0 0 0 1

1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

 0 0 1 0

0 1 0

1 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 MI IO

ADD 0 0 1 0

0 1 1

0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 0 RO BI

 0 0 1 0

1 0 0

0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 ΣO AI

 0 0 1 1

0 1 0

1 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 MI IO

SUB 0 0 1 1

0 1 1

0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 0 RO BI

 0 0 1 1

1 0 0

0 0 0 0 0 1 0 0

0 1 1 0 0 0 0 0 ΣO AI SU

 0 1 0 0

0 1 0

1 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 MI IO

STA 0 1 0 0

0 1 1

0 1 0 0 0 0 1 0

0 0 0 0 0 0 0 0 RI AO

 0 1 0 0

1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

 0 1 1 0

0 1 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 IO AI

LDI 0 1 1 0

0 1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

 0 1 1 0

1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

 0 1 1 1

0 1 0

0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 0 IO BI

ADI 0 1 1 1

0 1 1

0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 ΣO AI

 0 1 1 1

1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

 1 0 0 0

0 1 0

0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 0 IO BI

SBI 1 0 0 0

0 1 1

0 0 0 0 0 1 0 0

0 1 1 0 0 0 0 0 ΣO AI SU

 1 0 0 0

1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

 1 0 0 1

0 1 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 IO J

JMP 1 0 0 1

0 1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

 1 0 0 1

1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

 1 0 1 0

0 1 0

0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 AO OI

OUT 1 0 1 0

0 1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

 1 0 1 0

1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

 1 0 1 1

0 1 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

HLT 1 0 1 1

0 1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

 1 0 1 0

1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Instruction

HLT

Memory Address Memory Contents

EEPROM

The type of memory that the computer will use to store all this data is called EEPROM,

which stands for “Electrically Erasable Programable Read-Only Memory”. EEPROM is read-

only meaning that you can’t write data into it while the program is running. ROM memory

is the kind that you would find in video game cartridges or discs where the computer can

only read data from it but can’t change anything. The “Electrically Erasable Programable”

part means that we can input data into it and then change it at a different time.

A 28C16 EEPROM chip will be used by this computer. This chip has more than enough

memory to accommodate the 7bit addresses that are needed, but the data itself is stored

in words that are only 8bits long whereas the computer needs 16-bit words to

accommodate all the control signals. This means that we’ll have to do the same thing as with

the RAM module, use two chips that are accessed with the same address.

The 25C16 EEPROM

Pins 1-8, 22, 23, 19. The address pins. Through these

pins the memory addresses will be inputted. Only

pins 2-8 will be used as we only need 7 bits for the

addresses.

Pins 9-11, 13-17. The input/output pins. These pins

are used to program data into the chip and then

retrieve that data once the computer is running.

Whether the chip is inputting, or outputting is based

on the output and write enable pins.

Pin 18. The chip enable pin. This pin allows itself to

be used when LOW, so it will always be connected

to ground.

Pin 20. The output enable pin. This pin allows data

to be outputted through the I/O pins. To output data

the pin should be LOW and the input data it should

be HIGH. When hooked up to the computer it

should stay connected to ground.

Pin 21. The write enable pin. When this pin is brought HIGH, the whatever is coming

through the I/O pins is saved into the address selected. Once in the computer it will stay

connected to power.

Programing the 25C16 EEPROM

Before connecting the chip to the computer itself, the data needs to be programed in. This

will be done using dip switches to control the addresses and then jumper leads to input the

data easily. When programing the chip, it helps to connect the I/O pins to LEDs so that you

can see the data that you’re inputting, but this step isn’t required. Between the LEDs and

the I/O pins hook up some jumper cables, these will be brought HIGH or LOW based on

what we want to input.

Then, the address pins would be connected to the dip switches, where the ON side of the

switches is connected to 5V and the OFF side to ground through a 1kΩ resistor(this way

the data defaults to a 0). Since the computer only needs 7bit addresses, pins A7-10 can be

connected to ground. Next, the chip enable pin should be connected to ground and the

output enable to power. The output enable pin can be brought LOW to see the data stored

in the chip but not while inputting data. Lastly, the write enable pin should be connected to

a push button that would be pressed to store the data being inputted.

However, the chip’s data sheet specifies that to input data, the write enable pin should only

be LOW for between 100-1000 nanoseconds. Considering that 1000 nanoseconds is very

little time to push a button, we can connect a 1nF capacitor and a 470Ω resistor in series in

front of the push button with the lead connected to the write enable pin in between (this

is shown more clearly in the diagram below). A second resistor is also needed to discharge

the capacitor on its other side. This little circuit stops electricity from flowing through the

capacitor for 470 nanoseconds.

With this set up you can program the EEPROM by first selecting the address with the dip

switches, then manually connecting the input leads to either ground or power based on the

data required, and then pressing the push button. When connecting the I/O pins they should

follow the same order that was laid out:

MI RI RO II IO AI AO BI OI ΣO SU CE CO J HLT Gnd.

I/O7 I/O6 I/O5 I/O4 I/O3 I/O2 I/O1 I/O0 I/O7 I/O6 I/O5 I/O4 I/O3 I/O2 I/O1 I/O0

Make sure to switch out the EEPROM chips to program the full 16 bits of data.

Chip 1 Chip 2

EEPROM

Connecting the EEPROMs

With both 25C16 chips programed, they can now be connected together with the rest of

the computer. The A0-2 address pins are to be connected to the binary counter’s outputs,

the A3-6 address pins should be connected to the instruction register, and the other address

pins should be connected to ground since they won’t be changing. The I/O pins connect to

the control lines following the order laid out above. Finally, the write enable pin goes to 5V,

and the output and chip enables go to ground.

7
4
L
S
1
6
1

7
4
L
S0

4

7
4
L
S
1
2
8

E
E
P
R

O
M

E
E
P
R

O
M

Programing the Computer

Instructions are inputted into the computer through a series of dip switches connected to

RAM. What the user would have to do is first set the computer to Write mode with the

two-state switch in the RAM module, input the proper memory address and then input the

instruction with the binary code. A simple program that could be inputted is the addition of

two numbers.

Say we wanted to add 67 and 29:

Instruction Memory Address Data in RAM

LDA 4 0000 0001 0011

ADD 5 0001 0010 0100

OUT 0010 1110 0000

HLT 0011 1111 0000

Data 0100 01000011 (67)

Data 0110 00011101 (29)

The inputs for the memory address and the data are shown in the table above. We would

have to manually set the dip switches ON or OFF for each instruction. Once the program

is written, the computer would be set to Run mode and the clock would be started. The

output would show 01100000 or 96 in decimal.

Now, let’s try a more complicated program like outputting the Fibonacci sequence. This

sequence is an infinite list of numbers where the next number is equal to the sum of the

two previous ones: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34… A computer can create the Fibonacci

sequence by having three variables, the first two adding to the next and then the values

cycling between the variables like so:

x  y y  z z  x + y

0 1 1

1 1 2
1 2 3

2 3 5

3 5 8

5 8 13

8 13 21

The table shows how to output the Fibonnacci sequence, first x is set to 0 and y is set to 1.

Then, z is set to the sum of x + y, x is set to y’s value and y is set to z’s value; this process

is then looped. In our program we want the computer to output x’s changing values as x is

the only variable with the full sequence starting from 0.

Next, this process needs to be written with our computer’s instructions and then converted

to the binary code to be inputted into RAM.

 Instruction Memory Address Data in RAM

1. LDA 10 Load x 0001 0001 1010
2. OUT Output x 0010 1110 0000

3. ADD 11 Add y to x 0011 0010 1011

4. STA 12 Store the sum to z 0100 0100 1100

5. LDA 11 Load y 0101 0001 1011

6. STA 10 Set x to y’s value 0110 0100 1010

7. LDA 12 Load z 0111 0001 1100

8. STA 11 Set y to z’s value 1000 0100 1011

9. JMP 1 Jump to the beginning 1001 1000 0001

10. Data for ‘x’ Begins by setting x to 0 1010 0000 0000

11. Data for ‘y’ Begins by setting y to 1 1011 0000 0001

12. Data for ‘z’ 1100 0000 0000

If we were to input this program into the computer, we would see the output show the

Fibonacci numbers until reaching a number greater than 255 which is the most the output

can show. This computer doesn’t have a way of detecting whether the number is greater

than 255 so the computer would keep going unless the clock is stopped.

✦ ✦ ✦

The Finishing Touches

Reset Switch

At this point the computer is basically finished, you can program code in through RAM and

run it, giving you the expected answer. However, to run that program again or run a

different one, you would need to reset all of the components one at a time. This is really

inconvenient so it’s easier to have a master reset switch that clears all the modules. The

way this will work is by having a push button that defaults to LOW so that when it’s pressed

a reset signal will go HIGH clearing all the registers.

While the reset switch may sound simple there are three different reset lines that the

computer has. The first is a reset that clears the components when turned HIGH, the

second acts the same way but clears other components when turned LOW (the program

counter for example resets when brought LOW). The last reset line only clears the control

logic’s step counter since the binary counter is already connected to the T5 output. The

following circuit shows how the reset line would be created:

The pull-down resistor defaults the basic reset line to LOW so that it isn’t active all the

time. The buffer (triangle without the circle) simply allows the button to turn on the Reset

line which will be connected to the computer’s components. The NOT gate inverts the

signal so that it goes LOW when the button is pressed. Lastly, both the Reset̅̅ ̅̅ ̅̅ ̅ and the T5̅̅̅̅

lines default to HIGH, thus allowing current to pass through the AND gate. Only when

either of the two signals go LOW does the AND gate output LOW, causing the Step

Counter Reset to activate.

To make this circuit use up less chips, we can change the buffer to have two inverters in

series. The three total inverters can be found in the 74LS04 chip used in the control logic

and the 74LS08 chip (AND gates) used for the clock can be taken advantage of to complete

the circuit.

Make sure that:

Reset goes to MAR, A register, B register, Instruction Register, Output Register

Reset̅̅ ̅̅ ̅̅ ̅ goes to Program counter.

Step Counter Reset̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ goes to the reset pin (pin 1) on the control logic’s binary counter.

Power Supply

For a power supply you can use anyone that outputs 5V. Most phone chargers output 5V

but to use it you would have to strip the wire and solder the connecting so that they fit the

breadboard. Dedicated breadboard power supplies also exist or even the power output of

a micro controller can be used.

✦ ✦ ✦

Further Additions to the Computer

The computer that this guide shows how build can be used to do basic computations. To

further improve this computer to make it more user friendly or improve its usefulness,

there are various additions that can be made to the computer.

1. Instead of having a binary output, the computer’s output register can be connected

to a decimal segment display (the ones you would find in a cheap calculator). This

addition would require combinational logic like the one used for the computer’s

control logic using the EEPROMs.

2. Another possible expansion is to have more instructions for the computer, which

would allow for more complicated programs. One of these possible expansions is

the conditional jump. This instruction would jump to another instruction if an event

happened; for example, if the ALU returns a negative number, a 0 or a number

greater than 255. The conditional jump is extremely useful and can be implemented

quite easily.

3. By increasing the amount of RAM, longer programs could be stored in memory. 16

bytes of RAM is enough for basic calculations but not enough for complex programs.

Along those lines, instead of the components only using 8bits of data, you could

increase that number.

4. A more practical expansion is to remove the program counter enable control line

so that it doesn’t become part of the microinstruction. Instead of every instruction

enabling the program counter, it could simply be incremented automatically at the

end of every instruction.

5. If you found programing the EEPROM manually very tedious, then you could find a

way of doing it using a microcontroller. There are even pre-built devices that are

specifically made to program EEPROMs.

6. Apart from the previous example, there are many other ways of implementing

modern microcontrollers like the Raspberry Pi or an Arduino. These devices could

be used to input programs using a keyboard instead of the DIP switches. They could

also be used to hook up the output to a monitor while converting the binary output

to a more user friendly decimal based output.

✦ ✦ ✦

Materials

Item Quantity Modules

Breadboard 14-15 All

Wire - All

2-State Switch 2 Clock, RAM

Momentary Push Button 2 Clock RAM

4-position DIP switch 1 RAM, Control Logic

8-position DIP switch 1 RAM, Control Logic

(can be switched out to program the

EEPROM)

Various Color LEDs - All

220Ω Resistor 2 RAM

470Ω Resistor 15 Bus, Control Logic

1kΩ Resistor 3 Clock, RAM

10k Resistor 15 Bus, Control Logic

100kΩ Resistor 2 Clock

1MΩ Resistor 1 Clock

0-1MΩ Potentiometer 1 Clock

1nF Capacotor 1 Control Logic

10nF Capacitor 1 Clock, RAM

100nF capacitor 2 Clock

1µF Capacitor 2 Clock

555 Timer 1 Clock

74LS00 – NAND gates 2 RAM

74LS04 – Inverters 4 Clock, RAM, Control Logic

74LS08 – AND gates 3 Clock, Output

74LS86 – XOR gates 2 ALU

74LS138 – Binary Decoder 1 Control Logic

74LS157 – 2-to-1 line select 4 RAM

74LS161 – 4bit binary counter 4 Program Counter, Control Logic

74LS173 – 4bit register 7 RAM, Registers

74LS189 – 64bit RAM 2 RAM

74LS245 – Bus Transceiver 6 Registers, ALU, RAM, Program

Counter

74LS283 – 4bit adder 2 ALU

28C16 EEPROM 2 Control Logic

This list of materials is not completely accurate as I made it before making the final design

of the computer. Therefore, there may be some extra pieces or some that are missing.

Conclusion

By reading through this guide and building the 8bit breadboard computer, you will hopefully

have learned the basics of computer science. Instead of computers being shrouded in

mystery, you will now realize that they’re machines which contain many smaller components

that work elegantly to provide the user with their desire.

While it’s true that most, if not all modern computers don’t resemble the one made in this

project, they do share many similarities. Think of this breadboard computer as being the

bare-bones skeleton that is used to teach how the body holds itself up. Sure it can’t perform

most of the functions that we need today, but it’s still a good teaching tool that shows you

how changing a couple of switches can give you the answers to mathematical problems.

Through this computer you will have learnt the basics of computer architecture, what

different components are needed to perform a task and how they’re used to run a program.

Many of the modules built in this project can be found in your everyday laptop, they’re just

bigger and more complicated.

You will also have learnt how computers execute programs. Even if you learn how to code

nowadays, you probably wouldn’t know that every instruction is made up of even smaller

instructions, which manipulate various control lines, moving data around multiple

components. The “programming language” used in this computer is called machine language

and is the foundation for all modern programming languages. Languages like C have

instructions that are then translated into machine language which the computer can

understand.

There are many resources online that you can find that explore these computer science

concepts at a deeper level. Ultimately, by reading this guide I hope that you’ve gained

knowledge in this subject and have become interested to continue learning about it.

